Chapter 4: continued **Atomic Vibrations**

Every atom in a solid material is vibrating very rapidly about its lattice position within the crystal

- typical vibration frequency: 1013 Hz
- typical vibration amplitude: 10^{-3} nm = 10^{-12} m

Atomic vibrations have many consequences:

- X-ray peaks are not sharp
- responsible for heat capacity and transport
- melting, when amplitude is high enough
- responsible for electrical resistance

Chapter 4

Why frequencies are so high?

- Basically, because atoms are so light
- Consider the simple harmonic oscillator model

$$F(x) = m\frac{d^2x}{dt^2} = -kx$$
Potential energy of a spring:

$$U(x) = \frac{1}{2}k(x - x_o)^2$$

Frequency:
$$f = \frac{\omega}{2\Pi} = \frac{1}{2\Pi} \sqrt{\frac{k}{m}}$$

Chapter 4

Potential energy

$$U(x) = \frac{1}{2}k(x - x_o)^2$$

Almost any potential energy with the minimum can be approximated by a parabola (as long as we stay close enough to the minimum)

$$U(r) \approx U(r_o) + U'(r_o)(r-r_o) + \frac{1}{2}U''(r_o)(r-r_o)^2$$
 Zero-point of PE parabola irrelevant

Comparing to the PE of a spring, we identify $k = \frac{\partial^2 U}{\partial r^2}\Big|_{c_0}$

Example: NaCl crystal

Model: $U(r) = -\frac{A}{r} + \frac{B}{r^8}$, where A = 1.31eV nm, B = 2.33×10⁻⁵eV nm⁸

Chapter 4

Force constant k values: comparison

$$k \sim Y \times a$$

a – lattice parameter, nm; Y – constant (Young's modulus)

Element	m, amu	Lattice parameter, <i>a</i> , nm	Frequency ω, rad s ⁻¹	Force constant k, N m ⁻¹
Diamond	12	0.154	8.54×10 ¹³	146
Cu	64	0.256	1.77×10 ¹³	33.3
Pb	207	0.350	3.90×10 ¹²	5.25

- · Atoms of low mass which are connected by strong bonds vibrate rapidly
- Atoms of high mass connected by weak bonds vibrate comparatively slowly

Chapter 4

Amplitude of atomic vibrations

By treating the atoms as simple harmonic oscillators and assuming that the average thermal energy of an atom at temperature T is $k_BT \rightarrow$ the amplitude of the atomic vibrations \mathcal{X}_{max}

For any harmonic oscillator the potential energy at distance x from the equilibrium position is $0.5 k x^2$, where k is the force constant. At the maximum amplitude, x_{max} , all of the energy of the oscillator is potential energy

$$E = \frac{p^2}{2m} + \frac{k(x - x_o)^2}{2} = kT + \frac{k(x - x_o)^2}{2} \text{ (in 1D)}$$
$$\frac{1}{2}kx_{\text{max}}^2 = k_B T$$

$$x_{\text{max}} = \sqrt{\frac{2k_B T}{k}}$$

The energy of one atom moving along one direction (x) is written as (more next semester!):

Chapter 4

Thermal vibrations of the atoms

Q.: Given that the actual value of *k* for Cu is about 100 N m⁻¹ and the atomic spacing is 0.256nm, estimate the amplitude of vibration of the atoms at (a) 300K and (b) 1200K as a percentage of the equilibrium spacing.

Chapter 4