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ABSTRACT: The frequency of localized surface plasmon resonance (LSPR) displayed by gold 

nanoparticles (AuNPs) redshifts as a function of their local refractive index, which renders them 

valuable transducers for sensing applications. An ensemble hypothesis is presented herein, along 

with spectroscopic evidence, using the biotin-streptavidin system on immobilized AuNPs to 

interpret the decrease in ensemble linewidth (ELW) consistently observed upon functionalization 

of plasmonic nanoparticles and the subsequent analyte binding. These results demonstrate that 

ELW can be used to monitor recognition reactions, providing spectral details and a possible 

sensitivity enhancement to the conventional wavelength sensing. A novel sensing platform 

allowing the simultaneous measurement of both LSPR wavelength and ELW is proposed, which 

not only combines the advantages of both parameters but also permits real-time measurement and 

miniaturization. 
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1. INTRODUCTION 

Gold nanoparticles (AuNPs) exhibit localized surface plasmon resonance (LSPR) whose 

frequency is dependent on their size, shape, interparticle spacing, and local environment.1-2 This 

latter dependency renders them valuable transducers that convert small changes in the local 

refractive index into spectral shifts of their extinction spectra.3-4  

Significant effort has been dedicated to improving the intrinsic sensitivity of LSPR sensors via 

the optimization of instrumental setups5-6; as well as the exploitation of novel geometries7-9 and 

materials10-12 for higher polarizabilities. As an alternative to wavelength and intensity sensing, the 

sensitivity can be further improved extrinsically by monitoring the change in curvature13 and 

inflection points14 of the resonance peak. These extrinsic methods are post-measurement 

manipulations of the extinction spectra that require strategic smoothing algorithms so that the 

signal to noise ratio (S/N) is not degraded by numerical differentiation15. Thus, challenges exist if 

one wishes to obtain real-time results on a portable device that relies on a relatively simple and 

universal processing algorithm. 

To detect a specific analyte, AuNPs typically need to be functionalized with a self-assembled 

monolayer (SAM), with the corresponding recognition moieties exposed on the outside.16-17 

Spectroscopic measurements18-19 and theoretical models20-22 have shown that chemical interface 

damping induced by adsorbate molecules increases the homogeneous spectral linewidth of a single 

plasmonic nanoparticle. One could argue that if every single nanoparticle within an ensemble 

displays the same amount of spectral redshift, the ensemble spectrum should broaden as a 

summation of individual damping. However, a decrease in the ensemble spectral linewidth is 

consistently observed for plasmonic nanoparticles, upon both SAM formation and analyte binding 
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(see Table S1 for the estimated peak widths).13, 23-27 The reason for such narrowing phenomenon 

has never been discussed.  

Herein, an ensemble hypothesis along with experimental evidence is presented as an 

interpretation of the ensemble narrowing effect, based on which a novel avenue of sensing is 

proposed using the classic biotin-streptavidin system as a demonstration. This portable sensing 

platform is highly adaptable and allows the simultaneous register of both LSPR peak position and 

bandwidth, providing comprehensive spectral information as well as possibilities of extrinsic 

sensitivity enhancement, real-time measurement and facile miniaturization. 

 

2. EXPERIMENTAL SECTION 

2.1. Materials. Chloro(trimethylphosphine)gold(I) (99%), methyl lithium (1.6 M in diethyl 

ether), lithium aluminum hydride (95%), magnesium sulfate, chlorobenzene, 

trichloro(octadecyl)silane (OTS), and 11-mercapto-1-undecanol (97%; referred to as alkane thiol 

hereafter) were acquired from Sigma Aldrich (Ontario, Canada). Sulfuric acid (98%), hydrogen 

peroxide (30%), acetone, ethanol, methanol, 1-propanol, and toluene were obtained from Caledon 

Laboratories Ltd. (Ontario, Canada). Polystyrene granules and polymethylmethacrylate (PMMA) 

sheets were obtained from Goodfellow Cambridge Ltd. (Huntingdon, England). Monothiolalkane 

PEG-biotin was purchased from SensoPath Technologies (Montana, USA; referred to as 

biotinylated thiol hereafter). Streptavidin was obtained from Rocklan Immunochemicals Inc. 

(Pennsylvania, USA). Plain microscope slides were purchased from Bio Nuclear Diagnostics Inc. 

(Ontario, Canada). Diethyl ether was distilled from lithium aluminum hydride and degassed before 

use. Water used during this study was deionized, obtained from Millipore cartridges. All other 
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materials were used without further purification. Organometallic chemical vapor deposition 

(OMCVD) was carried out in a custom-made glass chamber. 

2.2. OMCVD. Methyl(trimethylphosphine)gold(I) was synthesized as previously described in 

the literature.28 Gold nanoparticles (AuNPs) were deposited as previously described with 

modifications.28 Microscope slides were cut into 0.8 cm by 2.5 cm pieces and cleaned in 1:1 

ethanol and acetone mixture by sonication for 30 min before use. Polymer substrate was prepared 

by spin coating polystyrene solution (1.5 g in 13 mL of chlorobenzene) on pre-cut PMMA (0.8 cm 

by 2.5 cm) at 2200 rpm. Hydrogen peroxide (1 mL) was added into UV ozone chamber to enhance 

the creation of surface –OH groups on microscope slides or PMMA substrates. OMCVD was 

carried out at 65.5 C under 13 Pa for 6-8 min to yield various sizes of AuNPs.  

2.3. Scanning electron microscopy (SEM) characterization of AuNPs. The diameter range 

was determined with an SEM (Leo 1540 XB, Carl Zeiss, Oberkochen, Germany) under 20 kV 

beam in back-scatter mode. 15 nm of aluminum was sputtered onto substrates prior to 

measurements. The microscopy images are of low quality due to the non-conducting nature of 

glass. Four different samples with LSPR peak wavelength of 532.5 nm, 578.0 nm, 552.0 nm and 

514.5 nm were measured. Their respective diameters were 6.6  1.2 nm (Fig. S1A), 8.6  1.9 nm 

(Fig. S1B), 7.4  1.6 nm (Fig. S1C), and 5.6  1.3 nm (Fig. S1D). Sample B was not used for 

spectral study due to the crowdedness of the nanoparticles. Its size measurement represents the 

upper limit of the nanoparticles studied. Since the mean diameter increases with LSPR 

wavelength29, nanoparticles from all the samples studied fall within the regime of electrostatic 

approximation.30  

2.4. Biosensing. All absorption spectra were obtained in water for glass substrates and in air for 

polymer substrates, using a Lambda 850 UV-vis spectrometer (Perkin Elmer, USA) in 
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transmission mode. The scanning was performed between 400 and 800 nm, in increments of 0.5 

nm for glass substrates and 2 nm for polymer substrates. The SAM was prepared with 95:5 (molar 

ratio) of alkane thiol to biotinylated thiol in a total concentration of 510-4 M ethanolic solution. 

AuNP samples were functionalized with an excess of thiol solution for 18~24 h. Each sample was 

exposed to higher and higher concentration of aqueous streptavidin solutions between 10-12 and 

10-5 M. Each concentration was allowed at least 3h reaction time. The samples were rinsed 

thoroughly with water before taking their spectra to minimize unspecific binding. Bulk sensing 

was performed in the same configuration. 

2.5. Calculation of ensemble linewidth (ELW). The ensemble linewidth, ELW, is defined as 

the spectral distance between the LSPR peak position (λ0) and the half-maximum position (λ1) 

toward the direction of longer wavelengths, such as the red and the blue arrows in Fig. 1. All 

spectra were corrected for baseline and normalized before ELW was extracted. The baseline was 

set to be the absorption value at 700 nm from each raw spectrum due to the presence of strong 

interference pattern from the substrate between 700 and 800 nm. The normalization was performed 

so that the maximum absorption is unity. The LSPR peak position (λ0) was the spectral position 

with the highest absorption value. The half-maximum position (λ1) was found from actual spectra 

using an iterative process to select the spectral position whose absorption is closest to 0.5. The 

above steps were executed using MATLAB 2016.  
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Figure 1. The normalized and baseline corrected absorption spectrum of an ensemble of AuNPs 

before (blue) and after (red) being functionalized with the mixed thiol SAM. The shift of maximum 

position (0→0’) and half maximum position (1→1’) determines the values of LSPR0 and 

LSPR1, respectively. The blue and red arrows (ELW and ELW’) are staggered for better 

visualization. 

 

3. RESULTS AND DISCUSSION 

3.1. Premises of the ensemble hypothesis and their validity. As defined in section 2.5, ELW 

excludes the spectral region on the low-energy side of the resonance peak, so that interband 

transition near the L-symmetry point with onset energy of 2.4 eV is avoided for its effect on the 

spectral linewidth of single nanoparticles, thus also on the ELW.31 Although there is another 

interband transition near the X-symmetry point with onset energy of 1.8 eV, its absorption cross 

section is much weaker in comparison to the L-symmetry transition.32-34 Thus, the X-symmetry 

interband transition has negligible contribution to the ELW. This argument can also be supported 

experimentally, where surface-immobilized AuNPs were exposed to two different bulk refractive 
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indices (Fig. 2A). The ELW stayed constant within measurement uncertainty even though the 

reversible shift of the plasmon peak altered the spectral overlap between the X-symmetry transition 

edge and the LSPR peak position. 

 

Figure 2. (A) The raw absorption spectra of surface-immobilized AuNPs exposed to methanol (n 

= 1.33), 1-propanol (n = 1.38), then back to methanol. ELW = 48 ± 2 nm for all three peaks. (B) 

The redshift of LSPR peak position as a result of thiolation versus the LSPR peak wavelength 

before the formation of thiol SAM. Each data point represents a different ensemble/sample. The 

trend is highlighted with an arrow.  

The four premises of the ensemble hypothesis are: (1) AuNPs are immobilized on a substrate; 

(2) there is a size distribution within an ensemble of AuNPs so that the resonance peak position 

(0) is controlled by the predominant size and that the half maximum position (1) is determined 
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by larger particles; (3) all AuNPs have similar bulk sensitivity; (4) the ad-layer does not extend far 

beyond the evanescent decay length of AuNPs. 

The first premise is based on the fact that SAM molecules displace the surface anions of 

chemically reduced colloids, disrupting the repulsive forces that stabilize the suspension. Thus, 

the observed optical changes for colloidal plasmonic nanoparticles should largely be attributed to 

the aggregation of colloids and not to the presence of thiol capping layers.35-37 The ensemble 

hypothesis is therefore only valid for surface immobilized nanoparticles. In fact, ensemble peak 

broadening instead of narrowing has been observed for colloidal plasmonic nanoparticles.14, 38-39 

The second premise should be valid for a realistic ensemble with a reasonable size distribution 

as long as the LSPR peak position redshifts as the particle size increases (see Fig. S1).29-31 The 

ensemble spectrum can therefore be described as the sum of single particle spectra multiplied by 

their respective weighting factors according to the size distribution.40  

The third premise is supported theoretically41 as all the AuNPs studied fall within the regime of 

electrostatic approximation (see section 2.3 and Fig. S1 for size measurements). It is also 

corroborated by the bulk sensing experiment (Fig. 2A) in that all the AuNPs exhibited the same 

amount of redshift and blueshift reversibly, leading to a constant ELW throughout a cycle of 

change in bulk refractive index. Moreover, it has been shown explicitly that the bulk sensitivity of 

surface immobilized AuNPs fall within a narrow range regardless of the size for particles up to 48 

nm in diameter.31 The fourth premise should generally hold true for small organic molecules. 

Otherwise, the exponentially decaying field will lead to a weak response. Since the decay length 

is comparable to the particle size, an ad-layer of around 10 nm in thickness is reasonable for simple 

systems such as biotin-streptavidin, whose swollen thickness is around 6 nm.42 
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3.2. Ensemble hypothesis. For an ensemble of AuNPs, let the diameter and the evanescent 

decay length of the predominant particle size (peaking at 0) denoted by D0 and I0; and those of 

the particles peaking at 1 by D1 and I1. Quantitatively, the shift of the 0 position of an ensemble 

spectrum (LSPR0, equation 1) due to a single adsorbed layer of uniform thickness can be 

expressed in terms of its refractive index (na) and thickness (d); refractive index of the solvent 

(ns); characteristic decay length (I0) and bulk sensitivity (m) of the nanoparticles.43 The shift of the 

1 position (LSPR1) can be obtained the same way by substituting I1 for I0 and 1 for 0. Therefore, 

the change in ensemble linewidth (ELW, equation 2) can be expressed as the difference between 

LSPR1 and LSPR0 as illustrated in Fig. 1.  

଴
ᇱ − ଴ = 

௅ௌ௉ோ଴
= 𝑚(𝑛௔ − 𝑛௦)(1 − 𝑒

ି
మ೏

಺బ )                                    (1) 

𝐸𝐿𝑊 = ௅ௌ௉ோ − ௅ௌ௉ோ =  𝑚(𝑛௔ − 𝑛௦)(𝑒
ି

మ೏

಺బ − 𝑒
ି

మ೏

಺భ )                      (2) 

Given that m, (na – ns), and d terms are the same for all sizes within an ensemble, LSPR0 and 

ELW are entirely determined by the exponential terms in both equations. Since smaller 

nanoparticles have shorter decay lengths44, their 1 − 𝑒
ି

మ೏

಺బ  terms are larger, leading to more 

pronounced shifts. In fact, smaller particles are more sensitive due to a more confined 

electromagnetic field and a larger analyte to sensing volume ratio.3, 45-46 This comparison is 

supported both theoretically41 and experimentally (Fig. 2B) where smaller AuNPs peaking at 

shorter LSPR wavelengths exhibited larger redshifts after the formation of thiol SAM. Since the 

trend of smaller AuNPs exhibiting higher surface sensitivity is valid for particles up to 80 nm in 

diameter and an ad-layer of 15 nm in thickness41, the ensemble hypothesis should be applicable in 

a wide range of situations as long as the four premises are satisfied. This allows the interpretation 
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of ensemble narrowing observed in the literature13, 23-27 and ensures the adaptability of the sensing 

platform we will propose in section 3.3.  

 

Figure 3. (A) ELWs of different AuNP ensembles before (blue) and after (red) being 

functionalized with the mixed thiol SAM. The trend is highlighted with an arrow. Each blue point 

or each red point represents a different ensemble/sample. See Table S2 for their numerical values. 

The error bars are within the size of the symbols. (B) Time evolution of the ELW for one ensemble 

of AuNPs during the formation of the mixed thiol SAM. The inset shows a first order kinetic for 

the ELW with respect to time. All spectra were taken in water. 
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Within an ensemble of AuNPs, since D0 is smaller than D1, LSPR0 is larger than LSPR1, the 

ELW decreases as a result of thiolation. Indeed, the decrease in ELWs for 18 arbitrarily chosen 

ensembles after being functionalized with the thiol mixture (Fig. 3A) confirms the above 

conclusion and the narrowing effect observed in the literature.13, 23-27 In short, the ELW is 

decreased due to a differential behavior that arises from the ensemble size distribution: smaller 

particles corresponding to the blue side of a spectrum display larger redshifts than the larger ones 

that contribute to the red side of the spectrum. 

The time progression of ELW during SAM formation reveals a first order kinetic plot (Fig. 

3B) even though the plasmon peak position (λ0) remains unchanged (see Fig. S2 for raw spectra). 

Thus, ELW unveils information that might otherwise be lost by monitoring the resonance peak 

position alone. 

 

3.3. ELW for biosensing. The continuation of ensemble narrowing from SAM formation to 

analyte binding is observed for AuNPs immobilized on both glass and polystyrene substrates (Fig. 

4A and 4B respectively, green triangles). The shift of LSPR peak wavelength (Fig. 4A and 4B, 

orange circles), on the other hand, increases with a growing thickness and refractive index of the 

biotin-streptavidin layer. Because there will always be some degree of surface defects in SAM 

layers over the probing area of the UV-vis spectrometer, as can be confirmed by the broad 

distribution of shift response in Fig. 2B, the bound streptavidin and the biotinylated SAM are 

regarded as one single ad-layer. In fact, treating two imperfect layers as separate entities distorts 

the estimation of na.42 Therefore equation 1 and 2 are still valid, with LSPR0 and ELW describing 

the shift of LSPR peak wavelength and the change in ensemble linewidth with respect to bare 

AuNPs in an aqueous environment.  
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Figure 4. LSPR peak shift (orange circles) and change in ELW (green triangles) with respect to 

bare AuNPs versus concentration of streptavidin for (A) a glass substrate in water and (B) a 

polystyrene substrate in air. (C) Linear correlation between the change in ELW and the shift of 

LSPR peak wavelength. The slope and R2 are -0.72 and 0.99 for the glass substrate (red); -1.9 and 

0.98 for the polystyrene substrate (black). 

As more streptavidin molecules bind to biotin, d and (na – ns) increase as functions of 

streptavidin concentration. Again, the m, d and (na – ns) terms are the same for all the 

nanoparticles within a population. Plotting 𝑒
ି

మ೏

಺బ − 𝑒
ି

మ೏

಺భ  versus 1 − 𝑒
ି

మ೏

಺బ  gives a quasi-linear 

correlation between ELW and LSPR0, as long as d is still comparable to I0 (Fig. S3). The 

predicted linearity is corroborated for AuNPs on both glass and polystyrene substrates (Fig. 4C). 

Furthermore, the theoretical slope of this quasi-linear relationship becomes steeper with an 
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increasing difference between I0 and I1 (Fig. S3). Since a broad size distribution (large I1-I0) entails 

a large resonance linewidth that decreases the figure of merit (FOM) of plasmonic nanoparticles,47 

monitoring the change in ELW instead of wavelength shift proves more advantageous when the 

slope is steeper than negative one; where the slope is determined by the values of d, I0 and I1. 

The linearity between ELW and LSPR peak position urges for a new sensing avenue. 

Rather than a stand-alone sensing pathway, registering both ELW and LSPR peak wavelength 

imparts comprehensiveness, flexibility and portability. This can be achieved with a simplified 

transmission-based platform consisting of a prism and a photodiode array (TOC Figure) that 

disperses and detects the transmitted white light sequentially. Without any moving component, 

this configuration can be miniaturized more readily. ELW encodes more spectral information than 

LSPR wavelength alone; but the latter requires less computational effort and memory space, 

because ELW is calculated based on the pixel distance between 0 and 1 rather than the pixel 

position of 0 alone. Users should be able to choose either or both of the parameters depending on 

their needs.  
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Figure 5. Proposed sensing platform without moving components based on the ensemble 

narrowing effect. A white light beam is incident on the sample carrying the AuNP. The 

transmitted light is dispersed by a prism and collected by a diode array delivering both ELW and 

spectral peak position. 

 

Since ELW is calculated as the pixel distance between 0 and 1, the measurement uncertainty 

is double of what would be for reading the peak shift alone. However, S/N can be enhanced by 

smoothing algorithm such as peak centroid fitting if necessary.48 Curvature has been proved useful 

for monitoring spectral changes without the influence of zeroth and first order noise such as drift 

and tilt.13 However, taking second derivative of absorption with respect to wavelength needs to be 

performed graphically, thus is not suitable for a portable device with real-time readout. These types 

of noise can be minimized by integrated a series of algorithms: Fourier transform, digital filters, 

and then an inverse Fourier transform. The methods stated here are all extrinsic methods that can 
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be applied in conjunction with other intrinsic improvements outlined in the Introduction to further 

enhance the sensitivity and S/N. 

4. CONCLUSIONS 

The narrowing of ELW observed in the literature13, 23-27 can be explained by a differential 

shifting behavior that arises from the ensemble size distribution as the thickness of adsorbed layers 

increases. This ensemble hypothesis is corroborated by the experimental evidence presented 

herein. While both are a function of analyte concentration, ELW reveals more spectral details than 

plasmon peak position, and can lead to a higher FOM if the slope of  ELW versus LSPR0 is 

steeper than negative one. A portable transmission-based sensing platform (TOC) allowing the 

simultaneous measurement of both LSPR wavelength and ELW is proposed. In comparison to 

conventional sensing configurations, the proposed platform not only reveals more spectral details 

and permits real-time measurements, but also present a possibility of sensitivity enhancement and 

miniaturization. This platform can also be adapted for other types of plasmonic nanoaprticles with 

different size ranges and geometries as long as the four premises of the ensemble hypothesis are 

satisfied. 
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