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Abstract. We consider numerical integration of nearly integrable Hamiltonian systems. The em-
phasis is on perturbed Keplerian motion, such as certain cases of the problem of two fixed centres
and the restricted three-body problem. We show that the presently known methods have useful
generalizations which are explicit and have a variable physical timestep which adjusts to both the
central and perturbing potentials. These methods make it possible to compute accurately fairly close
encounters. In some cases we suggest the use of composite (instead of symplectic) alternatives which
typically seem to have equally good energy conservation properties.
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1. Introduction

Symplectic integration is ideal for the study of the longterm behavior of nearly in-
tegrable dynamical systems. For planetary n-body problems the Wisdom—Holman
(1991, WH hereafter) method (also Kinoshita et al., 1991) is the most popular.
These methods require the use of a constant timestep in the integration and thus
problems may arise due to close approaches which will not be properly resolved.
Also a high eccentricity causes numerical instability in the WH-method (Rauch
and Holman, 1999). Some ideas to deal with these problems have been suggested
by Duncan et al. (1998), who use shorter step-size for close encounters, and by
Mikkola (1997), Mikkola and Tanikawa (1999a, MT99 hereafter), and Preto and
Tremaine (1999, PT99 hereafter) who utilize time transformations. In this paper
we first review the use of time transformations and (starting in §3) present our
new ideas.

2. Time Transformations

More than a century ago Poincare (Siegel, 1956, p. 35) introduced a technique
to transform the independent variable, usually the time, in a Hamiltonian system.
This was then used, for example, by Kustaanheimo and Stiefel (1965) (also Stiefel
and Scheifele, 1971) for regularization of two-body motions with perturbations.
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Later Mikkola (1997) applied the same idea in symplectic integration. Recently
a new transformation, allowing time step adjustment, was found by Preto and
Tremaine (PT99) and also by Mikkola and Tanikawa (MT99, 1999b). In the next
two subsections we briefly review these methods.

2.1. POINCARE’S TIME TRANSFORMATION

Let H(p, q, t) be a Hamiltonian. Take the time to be a canonical coordinate (¢ = ¢)
by adding the momentum of time p( to the Hamiltonian. Thus we have, in the ex-
tended phase space, what Stiefel and Scheifele call the homogeneous Hamiltonian

H, = H(p, q, q90) + po, (D

which is a constant of motion since it does not depend on time. If we choose
initially po = —H, then numerically H,(¢) = 0 along the entire trajectory (since it
is a constant).

Multiplication of the homogeneous Hamiltonian by the differential time trans-
formation dt = g(p, q)ds, where g > 0, leads to the new Hamiltonian

I'=g¢gH, = g(p,q) [H(p, q, q0) + pol. (2)

The time evolution of this new system is measured by the new independent variable
s. If one forms the equations of motion using this Hamiltonian, drops the (zero)
terms containing the factor H, and divides all equations by df/ds = g, the result is
nothing but the usual Hamiltonian equations of motion. Thus one can conclude that
the time transformed Hamiltonian (2) is equivalent to the original one displayed
in (1).

Although above we used the notation g, for the time coordinate we will, in what
follows, use the more familiar notation 7. Yet for the momentum of time the symbol
po will be used throughout.

2.2. FUNCTIONAL TIME TRANSFORMATION

A new possibility for introducing time transformation was given by Mikkola and
Tanikawa (MT99) who considered a homogeneous separable Hamiltonian H, =
T(p) + po — U(q, t) and wrote the new one in the logarithmic form

A =In(T + po) —In(U). 3)

This can be shown to be equivalent to the original one provided one takes initially
po = —(T —U). Here the time transformation is d¢/ds = d A /dpy = 1/(T + py) =
1/U.

Preto and Tremaine (1999) noted the more general possibility that the logarithm
can be replaced by any function f(z) (which has a positive derivative f'(z) > 0)

A= f(T+py) — fU). @)
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In this case the time transformation is

dt

o = f'(T + po), )
s

which, along the correct orbit, is also dz/ds = f'(U).

2.3. GENERALIZED LEAPFROG IN EXTENDED PHASE SPACE

The most popular symplectic integration method is the so called generalized leap-
frog: One divides the Hamiltonian in two individually integrable parts

H = Hy + Hi,

and the motion is approximated the leapfrog operator

h h
L(h) =Hy (5) H; (h)H, <§> , (6)

where Hy(%/2) means advancing the system over a timestep of length = /2 using
Hj as the Hamiltonian. Similarly H; (#) means using H; only as the Hamiltonian
and advancing it over a timestep of = h. In the WH-method H, is a Keplerian
Hamiltonian and H; is the perturbation, which normally depends only on coordin-
ates. In this case the Hy(h/2) step means pure Kepler motion over the timestep
required, while the H;(h) operation changes only the momenta by the amount
—h dH,/dq. Often this is called the velocity jump.

In the extended phase space one can similarly divide the Hamiltonian in inte-
grable parts and apply the generalized leapfrog. Mikkola (1997) used g = r for the
perturbed two-body problem

1, M
H=K—-R=—-p°"—— —R(,r1),
2 r

which was time transformed into
['=r(K + po) —rR(t,r). (7)

Here the division I'y = v (K + po) and I'y = —r R(¢, r) suggests itself. (Here and in
what follows we mostly consider the perturbed two-body problem and, therefore,
use the familiar notation r, instead of q, for coordinates.)

The I'y step consists of calculating the motion defined by I'y over a (fixed) step
h of the new independent variable s. This motion turns out to be integrable, and
in fact just the Kepler motion, but with a new effective mass

Mes =r (3p° + po) - (8)

The motion can be explicitly calculated using standard two-body formulae (e.g.
Stumpft, 1962), save that in place of the mass one must take the effective value
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Mg and the time increment is obtained by Ar= foh“ rds, which is a form of
Kepler’s equation.
The second part, advancement under I'; (i.e. the velocity jump), simply consists
of computing
ol d(rR ol d(rR
Ap:—hs—l=hSL; Apo=—hs—1:hSL
or or ot at
plus the addition of these jumps to p and py.
In the case of the functional time transformation with the Hamiltonian A =
f (3P + po) — f(M/r + R) the obvious division is

1, M
Ato(EP +Po>; A =—f <T+R) (10)

: (€))

and in this case, since A( only depends on the momenta and A on the coordinates,
the resulting algorithm is close to the standard leapfrog. For most functions f(z)
this algorithm is a rather rough approximation to the motion, however, the case
f(z) = In(z) is remarkable in that, if R = 0, it gives exact two-body orbit (MT99,
PT99), except for a phase error. Thus one may expect good performance for weakly
perturbed two-body orbits with this algorithm.

3. General Functional Time Transformation

Our new ideas are based on the observation that the Hamiltonian manipulation and
the resulting time transformation can be generalized in several ways. Instead of
dividing the Hamiltonian in the way that separates the momenta and coordinates
(considered in §2.2) one may use any other division H = Hy — R and a function
f(z) to obtain

A = f(Ho+ po) — f(R). (1D)
Furthermore, one may use some other function f(z, r, p) and write
A:f(H0+p07rap)_f(erap)a (12)

which may also be shown to be equivalent to the original Hamiltonian.
The particular special case which we will consider here is a somewhat simpler
function, namely

A = f(g(IK + pol) — f(g(r)R(z,1)), (13)

where K is a Kepler Hamiltonian (but could in principle be any part of the original
Hamiltonian) and R is the perturbing function. The separation into the Keplerian
part and perturbation is, however, not necessarily the normal one. One may, for
example, split the 1/r potential into two parts, placing one part into the perturbing
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function. In some problems this turns out to be a useful alternative, and will be
discussed in more detail later.

First we provide a simple demonstration that A can be used as the Hamiltonian:
Following Preto and Tremaine (1999) we introduce a new time transformation
function g defined by

g(po,p,t,1) zgw; 20 = g(r)(K + po);
20 — 21

z1 =gr)R(, ), (14)

where we see a difference quotient (f(zo) — f(z1))/(zo — z1) which reduces to the
derivative f’(z) in case zo — z; — z. Thus the fact that in the exact orbit zg =z,
does not mean any singularity of g. When we use the time transformation func-
tion g by multiplying the homogeneous Hamiltonian K + py — R with it we get
g2(po, p, t, r)(K+po—R) = A. Thus, the fact that A can be used as the Hamiltonian
is proved in terms of our earlier arguments.

Let us now divide A into the two parts

Ao = f(g(r)[K + pol); Ay =—f(g(rR(1, 1)), (15)

and consider the motion under the Hamiltonian Ay. Writing I'y = g(r)(K + po)
we have the equation of motion for the time

dt ,
5 = /' Toe®). (16)
A)

From this, or by considering Hamilton’s equation of motion, it is easy to see that the
only difference to what we would obtain, for any of the dependent variables, using
Ao versus the basic Poincare-transformed Hamiltonian I'y, is just the additional
factor f’(I'g). On the other hand TI'y is constant over the integration step under
consideration, thus the solution for the Ag-problem is just the same as that for I'y
save for the constant scaling factor in the (physical) timestep corresponding to the
constant steplength in the new independent variable. Here, it is also important to
realize that 'y~ g(r)R(#, r) and thus we may consider the time transformation
to be

d
SR FOIRE D)0 (17)

This is a crucial result, as it will allow the physical timestep to adjust in response
both to the central potential and the perturbation. However, the details depend on
our choice of the function f and R (how much, if any, of the 1/r potential has been
moved to the perturbing function).

The various consequences of this are most simply demonstrated by considering
some specific examples, such as the problem of two fixed centres and the restricted
three-body problem.
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3.1. TWO FIXED CENTRES

The problem of two fixed centres has the Hamiltonian
_lpom_m (18)

where r; = r — X; and x; and x, are the positions of the two attracting centres.
We consider now especially the case when m, <« m; which has some formal re-
semblance to the problem of motions in a planetary system. Let us write M = m,
m = m,, and write

1, M m

H=-p ————, 19
2p r A (19)

where we have taken x; =0 and thus A = |x; —r|. At first we use g(r) = 1 and thus
take for the functional Hamiltonian the form

A= f(ipP = (M —m)/r+po)— f/r+m/A), (20)

Ty R

where m is an adjustable constant, which splits the Kepler potential into two parts,
one of which we consider part of I'y, the other part of R. For the special case
f(z) = In(z), the time transformation is

d 11 1 rA

ds Ty R Gifr+m/A) A —+mr’

1)

which ensures that the physical timestep becomes small as either » or A go to zero.
If, on the other hand we choose g(r) = r and f(z) = In(z) we obtain

A=1n(r[%p2—(M—n~1)/r+po])—ln( [@+%]), (22)

r

Lo
which leads to

dt_r o r rA
ds Ty (rR)  mA+mr

(23)

Somewhat surprisingly we note that the time transformation looks the same. How-
ever, in the discrete algorithm this is not the case exactly and there is a significant
difference between the two formulations. While carrying out the A step in the first
case (21), the physical time advances by the amount

At = —; FOZK—l-p(),

which means that, to advance the motion, we must solve the Kepler’s equation

At = roXc (BX?) + 1 - VoX2ea(BX?) + Mg X e3(BX?), (24)
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for X, in terms of which the Kepler motion can be advanced by known formulae.
Here ry, vy, are the values of coordinates and velocities at the beginning of the step,
B =2Mx/ro — v(z) and ¢ are Stumpff-functions. In the second case (22) it is the

quantity X (= fOA’ dr/r) that advances by the amount

and the Kepler’s equation gives the corresponding amount of time increment by
explicit evaluation of the expression (24).

We stress that the quantities 'y are different in the two formulations by a factor
of r, but the really significant point is that in the first case we must solve Kepler’s
equation (At is given) but in the second case we only compute the increment of the
physical time using Kepler’s equation (X is given).

A difficult question here is how to choose the adjustable constant /7. Numer-
ical experiments suggest that the best value is m = m, but we have not found any
obvious reason for this. One should, however, note that if we set 71 =0 and take
f(z) =In(z), then we will not have the dr ocr scaling for small central body
distance. On the other hand, if we use some other function, like f'(z)=
1/4/1 4+ (z/m)?, the said scaling remains.

One should note that the two-body motion defined by the Hamiltonian Ay =
f(r[4p* — (M —m)/r + po)) is independent of the value of 77 save for a scaling
in the timestep. This is because, as we explained before, the motion is Keplerian
with the effective mass M = r(1p* + po) and this does not depend in any way
on the value of m. Thus m only affects the lengths of the timesteps.

Of course, the leapfrog must also advance the motion due to the remainder R,
whichever formulation we use. However, this only consists of the velocity jump

I(gR) d(gR)

or ot
In the considered case, however, py will remain constant since R does not contain
the time.

Ap = h,f'(gR) Apo = hs f'(gR) (25)

3.2. RESTRICTED THREE-BODY PROBLEM

3.2.1. Heliocentric coordinates
One of the possible forms of the restricted three-body problem Hamiltonian reads

1, M 1 r-r 26)
H=-p"———m|—— ,
2p r A r13

where r; is the position vector of the small mass m with respect to the big mass M.
Similarly to the two fixed centres problem we can write the functional Hamiltonian
A = Ao+ Ay, where



382 SEPPO MIKKOLA AND PAUL WIEGERT

1 M — m
f (r [Epz _Mm Po]) @7
r

m 1 r-r;
A1=—f(r[—+—— 3]> (28)
r A i
Again one could take f(z)=In(z) and get results that are very similar to those
in the case of the two fixed centres. However, we note that in the problem of two
fixed centres (with f(z) =In(z)) we have d¢/ds =~ 1/R, and R is greater than zero.
This may not be true in the present case owing to the indirect term in the potential
which makes R < 0 at large distance. The method breaks down at this point unless
we restrict ourselves to orbits with small enough . Another possibility is to choose
something else for f(z) or rather, for its derivative f'(z) in order that f’(rR)
remains positive. A reasonable looking alternative in this case is

I
(14 2/m+ T+ G/m?)

which reduces for large z to f'(z) ~m/z and the method then behaves, in this
limit, in a way similar to the f(z) =In(z) alternative. In the case of large negative
z we have simply f ~ 1, and the time transformation then approaches the simple
dr/ds ~ r law. However, at large distances the physical timestep would depend on
the angle between r and r;, which does not seem reasonable. Also the physical
timestep should not really be too big when the distance is large. This is because
the perturbation is periodic and the timestep should remain a small fraction of that
period. An alternative is to consider the system in the centre of mass frame, as in
this case the indirect term in the potential does not appear.

Ao

(@) = (29)

3.2.2. Inertial coordinates
If the Hamiltonian is written in an inertial coordinate system, such as the centre-
of-mass system, we have
1, M m
H=-p"————, (30)
2 r r
where r| and r, are distances measured from M and m, respectively. In this case
we may take

1, m
A0=f<r EP——+P0>, (31)
r
M m m
A1=—f<r[—+———:|>, (32)
r r r

with arbitrary m (note the different meaning from our earlier usage of the symbol
m). Again the A part gives always the same two-body motion independent of 7.
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An obvious possibility would be 7 =0, but then the proximity of the small mass
m becomes important in the time transformation only when r, <mr;/M which is
too close for small m. The most reasonable choice seems to be m ~ M, but then we
have similar difficulties (perturbing function may become zero or and/or negative)
as in the M-centric formulation (26). Also very eccentric orbits are troublesome
in this formulation because near the big primary the perturbations grow very large
due to the choice of the reference point where there is actually no attracting body
at all.

Since the centre-of-mass frame formulation presents its own difficulties, we
conclude that the method may be most useful for orbits that remain into the neigh-
borhood of the primaries. It may be possible to develop this method into a useful
tool for studies of problems such as long term evolution of near Earth asteroids.

4. External Forces

If we consider the use of the proposed method(s) in Solar System simulations, we
encounter a severe problem: the potential due to the planets, other than the one in
vicinity of which the particle moves, can be so large that the time transformation
does not shorten the step-size early enough and the regularizing effect is largely
lost. For example, if we consider a particle moving near the Earth and take into
account Jupiter as the perturber, then the potential due to Earth becomes compar-
able in numerical value to the part due to Jupiter only at a distance of the order of
1% of Sun’s distance. This is too late and makes the method useless in this case.
(Although the Hill sphere of the Earth is only about 0.01 (in our units) the trouble
begins in fact at much larger distances.)

To make use of our method it seems necessary to treat the extra forces in
the way suggested by Mikkola (1998) for inclusion of non-canonical forces. This
means that the method is not any more symplectic, but a composite method. It
remains, however, time symmetric and reversible which generally gives good beha-
vior largely resembling that of symplectic methods. Let F be an extra acceleration
to be added to the system represented by the Hamiltonian A = f(g [K + pol) —
f(gR). The only difference to the symplectic formulation is that we must add the
extra terms due to F to the velocity jump equations. If we write t' = gf'(gR), we
obtain

dp _ 3f(sR) LR, (33)
ds ar
. p- ('F), (34)

which must be solved over the s-interval of length = A, to obtain the momentum
jumps. Since the coordinates ¢, r are constants in this operation, the (exact) solu-
tion is
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Ap = h, [af ¢R) | t’F} : (35)
ar
0 R
Apo = h, [ f é‘i ) - (t’F)} , (36)

where (p) is the average of p over the step, that is, (p) =p(0) + Ap/2. Our nu-
merical experiments show that this method indeed works well for most orbits. The
only found exception, somewhat surprisingly, turned out to be the tadpole Trojan
orbit where a weak secular error occurs.

5. Stable Two-body Advancement

We wrote experimental codes to test our ideas in the two simple cases of the two
fixed centres and the restricted three-body problem. The two fixed centres prob-
lem is a good test case for its simplicity and also because it is easy to produce
trajectories which develop high eccentricities, up to e — 1.

Our first code used the Gaussian f, g formulation to advance the motion in
the Kepler Hamiltonian part; however, we found that there is some numerical
instability for e — 1. This was not the one found by Rauch and Holman (1999)
but something that exists even in the unperturbed case. The instability is not ser-
ious but clearly noticeable. This could be avoided by using the Kustaanheimo—
Stiefel (1965) transformation (also Stiefel and Scheifele, 1971), but experiments
also showed that the exact Kepler leapfrog (MT99, PT99), which is easy to pro-
gram, performs well in this respect. We thus turned to use this alternative and
describe the procedure here, including the necessary modifications to correct for
the phase error of the basic method. One should note that this exact Kepler leapfrog
is just another way of writing the solution for the two-body problem.

5.1. THE EXACT KEPLER LEAPFROG

The Kepler motion Hamiltonian in extended phase space is K =p?/2— M/r + p,
while the corresponding logarithmic form

2
Ag =1In <% + po> 4+ In(r) — In(M), (37)

gives the time-transformed equations of motion

dr 1 dr p
ds  (®*/2+p))’ ds  (P*/2+ po)’
dp r dpo

= ——, — =0, 38
ds r2 ds (38)
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which can be solved exactly using the leapfrog algorithm, except for a time error.
However, Preto and Tremaine (PT99) obtained an expression for the error of the
time as well as for the precise meaning of the leapfrog step-size. After a minor
rewriting of the PT99 expressions we have the exact Kepler leapfrog algorithm: We
start with the values p,, r,, #, at the beginning of a step of length 4, and calculate
the steplength for the leapfrog by

=" <hx po) (39)
= an| —./— ),
~ Po/2 mV 2
where
p>
m:ra(za'i_p())’ (40)

is an effective mass. (This is used instead of the true mass M, because mass does
not appear explicitly in the equations of motion and thus it enters the formulation
only via the value of pj.) We proceed with

Pq

ry,=r,+—-—————, 41
12 2022 1 po) 41)
r
Py = Pu — h=2, (42)
i
h Py
ry=Tip+-—o 43)
22 02/2+ po)
1
ty =1, + — + +t(h,m, P), (44)
’ 2 <<p3/2+ po)  (pE/2+ Po)) ’

to obtain the values py, rp, #, at the end of the step. Here the time correction is
T =—h>/(12m?) + O (h°), or precisely

_ h} an(JD) = VT

— , 45
Taw P )
where
h? Po
= =< —. 46
¢=-55 (46)

In passing we mention that the expression for 4 can also be written i =
(m/~/po/2)tan(u/2), where u = E;, — E, is the increment of the eccentric anom-
aly. Often it is convenient to use, instead of s =m [ "dt/r the variable X = f Ydr/r
=s/m (because this is usually used in the f, g formulation). In terms of this we
thus write for the leapfrog step-size parameter

__m Po\ _ X?po
h—mtan<X\/;>—thgl< 5 ) a7
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where the latter form is formally independent of the orbit type (i.e. it does not
contain the square root of pg, so it is a real expression for unbound orbits too,
which have py < 0). The function tg; (¢) is

tan(v) ¢ 202 178
N —1+§+F+E+”'. (48)

For this, as well as for the function

_ 2 3
tan(«/?)3 \/?)=1+2§+17§ L 62

tg,(¢) =

JT 3T 15 315 Tasas T

tg;(¢) = (49)

needed in the expression (45) for t, one can produce useful Pade approximants for
easy evaluation (the notation tg; comes from tan(x) =x + x3tg3 (x?)). Using the
Stumpff c-functions it is possible to express the tg-functions as

Gy (@@ — @)
00 BO=ET 5

which is another convenient way to evaluate these functions.

Finally, we mention that for the unperturbed Kepler problem the effective mass
equals the physical mass, that is, we have m = M, but in case of perturbations this
is not true any more since py is then determined by the total Hamiltonian.

tg;({) = ; (50)

5.2. TOY CODE EXPERIMENTS

We present here some results obtained using toy codes written according to the
presented theory. Our toy system consists of a ‘Sun’ of mass = 1, an ‘Earth’ of mass
= 3.0 x 107 in a circular orbit and in some cases a ‘Jupiter’ of mass = 1.0 x 1073
which was replaced by its tidal force only.

In general the heliocentric method is clearly best for orbits with small pericenter
distance, while for ‘near Earth asteroids’ all the regularized methods worked well
with no significant difference in accuracy.

While many experiments were conducted, we present here only one in detail and
tabulate results from several experiments to compare the present method with the
original WH. First we illustrate results obtained with the toy model of a barycentric
formulation plus the ‘Jupiter’ tidal field added as an external force. The Figure 1
illustrates the type of motion resulting from initial values: r=(1.02,0,0); v=
(0, .99, 0.0001) and obtained with an initial timestep of = 0.005 years, initial phase
of the planet = 1 radian and for the function f we used f'(z)=1/y/1+ (z/m)2.
The semi-major axis a, eccentricity e, and inclination i vary irregularly (but obey
the approximate conservation of the Jacobian constant). The variation limits in
this orbit for the orbital elements were found to be approximately 0.95 <a < 1.1,
0<e<0.1,0<i <0.4°. The total period of integration was 2000 years. In Fig-
ure 2 a particularly close encounter with the Earth is illustrated. In this case the
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X
Figure 1. Snapshots of the system. The density of plotted points signify the frequency of force
evaluations at any position. Complicated orbital motion and close approaches to the ‘Earth’ are
evident.
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Figure 2. Orbital motion very near the Earth (the small circle represents the Earth). We see a close
encounter that would actually have meant an impact on Earth. The figure was constructed by plotting
a dot after every integration step. Thus we see the high density of force evaluations (which is due
to the time transformation) in this critical region. The minimum timestep (in physical time) was
just 7s.
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Figure 3. A measure of the energy error = rA(K 4+ pg — R) as function of time (in years). The
somewhat irregular pattern is a consequence of the frequent irregular changes in orbital elements of
the particle.

particle would have actually impacted on Earth. The shortest physical timestep
during the closest approach was just 7 s which is to be compared with the initial one
of ~1.8 days (~0.005 periods). Despite this kind of extremely close approaches our
method conserves energy surprisingly well. This is illustrated in Figure 3. We see
that the level of the error changes abruptly several times. This is due to the changes
of the orbital elements of the particle, yet the error keeps fluctuating around zero
without permanent changes of the level. Not surprisingly, the original WH-method
fails in this case, even with much smaller stepsize.

To compare the behavior of the new- and the WH-method we carried out a
series of experiments, the results of which are summarized in Table 1. The model
used was the circular restricted three-body problem without any additional forces.
The particles started on the x-axis, initial orbit was circular and in the same plane
as that of the Earth. Thus only the semi-major axis was varied. The Earth had
an initial phase of 1 radians as in the previous experiment. The initial stepsize
in the integrations using the time-transformed method was adjusted such that the
total number of force evaluations was comparable to that in the WH-computations.
These numbers vary in the table since it is not possible to know in advance the
average stepsize. The results clearly demonstrate the increased accuracy due to
the use of the time-transformed version. Visual comparison of plots of the actual
trajectories, with results obtained using a much shorter stepsize, revealed that in
all these cases the orbits computed with the new method were significantly closer
to the correct ones than the WH trajectories. These results clearly demonstrate that
constant timesteps cannot be used for the close approaches considered here.
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TABLEI

Results of integrations using the WH-method (top) and the new method (bottom)
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ap Ny (dt) err Anmin type
WH

0.975 26737 0.047 5.3E-08 1.7E-02 N
0.980 26737 0.047 3.0E-02 8.4E-04 N
0.985 26737 0.047 4.9E-06 3.1E-03 N
0.990 26737 0.047 9.4E-11 6.9E-02 HS
0.995 26737 0.047 8.0E-13 0.22 HS
1.000 26737 0.047 1.7E-14 0.96 T
1.005 26737 0.047 7.7E-13 0.22 HS
1.010 26737 0.047 8.4E-11 7.1E-02 HS
1.015 26737 0.047 9.6E-06 2.5E-03 N
1.020 26737 0.047 3.1E-02 8.0E-04 N
1.025 26737 0.047 7.0E-07 4.9E-03 N
New

0.975 28830 0.044 4.5E-11 6.1E-04 N
0.980 27280 0.046 9.7E-11 8.8E-05 N
0.985 31850 0.039 5.7E-11 1.1E-03 N
0.990 24150 0.052 1.0E-12 6.9E-02 HS
0.995 22410 0.056 2.0E-12 0.22 HS
1.000 19670 0.064 1.1E-13 0.96 T
1.005 19800 0.063 2.0E-12 0.22 HS
1.010 24270 0.052 1.1E-12 7.1E-02 HS
1.015 33010 0.038 44E-11 9.9E-04 N
1.020 26330 0.048 3.1E-11 3.4E-04 N
1.025 24410 0.051 2.1E-10 8.7E-03 N

The displayed data are: the initial semi-major axis (ag), total number of force evaluations
(N¢), average timestep (df), maximum error measure err = [r A(K + pg — R)|pax, mini-
mum distance A, (at force evaluations) and type of orbit (N =NEA, HS = horseshoe,

T = tadpole). The period of integration was 200 years.

6. Conclusions

Various explicit, symplectic (or at least composite time-reversible) methods suit-
able for integrating the few-body problem in the context of the Solar System have
been discussed. We have demonstrated that algorithms, with constant stepsize in
some new independent variable, can be made to adjust the physical timestep to both
the central and any perturbing potential. This is an important advancement when
considering systems in which close approaches are important (e.g. near-Earth as-
teroids, Jupiter family comets, etc). These improvements are achieved through the
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use of time transformations, by splitting the Hamiltonian in novel ways, and/or by
considering perturbers as non-canonical ‘external’ forces. As a result, the physical
time step can vary in size over a range of several orders of magnitude in response to
the potential in which the test body is moving. Numerical experiments with these
improved algorithms show significant increases in precision over standard W-H
methods during close encounters, without increases in computing time.
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