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ABSTRACT

Symplectic integrators have been the backbone of much theoretical solar system research over the past decade.
As implemented, they involve the direct computation of the distances between each pair of N particles, a process
whose effort grows as O(N?2). A variety of fast [that is, with effort growing more slowly than O(N?)] but
approximate force calculation methods have been developed in other areas of research. Several of these algo-
rithms are examined here, and their speed and accuracy are compared with traditional methods, with an eye
toward their suitability for solar system research in particular. We find that approximate force algorithms can
provide, in some situations, a suitable alternative to traditional ones, with break-even in terms of computation time
at particle numbers as low as a few hundred, and often with only modest increases in the short-term error. Though
empirically stable on the systems tested here, the effect of approximate methods on the phase-space manifold of

the problem remains a concern.
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1. INTRODUCTION

Although symplectic integration techniques had been used
in solar system integrations in the past (Gladman & Duncan
1990), the field was revolutionized by the methods of Wisdom
& Holman (1992; see also Kinoshita, Yoshida, & Nakai 1991;
Saha & Tremaine 1992). In these methods, the particles’
Hamiltonian is split into different parts and the coordinates are
advanced under each part independently, typically by leapfrog
but sometimes by other kernels.

The Hamiltonian may be split in a number of ways. The
original implementation of Wisdom & Holman involved a
splitting into a purely Kepler term plus a single interaction
Hamiltonian. Later algorithms, such as SyMBA (Duncan,
Levison, & Lee 1998) and Mercury (Chambers 1999), split it
into a Kepler, a linear drift, and an interaction term. Regardless
of the splitting, the computational cost of the ““noninteraction”
(i.e., Kepler or Kepler plus drift) Hamiltonian(s) grows linearly
with the number of bodies N.

The interaction Hamiltonian incorporates the mutual gravi-
tational perturbations of the bodies in the system. This process,
as it is usually implemented, requires explicit determination of
the interparticle distances for all N particles, an O(N?) com-
putation. As N increases, this portion of the calculation can
become prohibitively expensive. As many questions of solar
system research can best be addressed by large-N simulations
(e.g., planet formation, ring dynamics, asteroid and Kuiper belt
evolution) and many researchers are beginning to do such
experiments, it seems timely to consider how this computa-
tional expense might be reduced.

Many algorithms have been developed, both within and
outside the astronomical community, to provide less expensive
determinations of the interparticle forces for large N-body
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systems. These invariably involve some loss of force accuracy.
Cosmologists and galactic dynamicists have constructed al-
gorithms able to handle millions of particles; however, they
are interested in following the particles for far fewer dynam-
ical times than are typical of solar system research. For ex-
ample, our Galaxy, with an age of 10 Gyr and a rotation period
of 250 Myr, has only existed for 40 dynamical times, whereas
the solar system, at roughly half that age, has been through
thousands of millions.

Thus, solar system simulations require that error propagation
be minimal over very many time steps, the size of which is often
constrained by the smallest orbit being simulated. For example,
a simulation of terrestrial planet formation might ideally follow
10° particles for 108 yr. Assuming the particle disk has an inner
edge at Mercury and the integrator takes 20 steps per orbit there,
the task could be completed in, say, 1 month of dedicated
computer time only if each time step could take 0.3 ms. How-
ever, currently such a calculation would take approximately
halfan hour per time step with traditional symplectic integrators
and current CPUs. Not all solar system processes of interest
require such long integration times. However, computing time
remains a constraint on many problems, particularly those that
involve the modeling of large numbers of particles.

Though time constraints are of much practical concern,
more important is the reliability of the integration performed.
Integration errors can be classified into different types, in-
cluding truncation error (introduced by the integration algo-
rithm, owing to its imperfect representation of the physical
problem) and round-off (introduced by the finite precision of
computer arithmetic). Here we are most interested in the errors
introduced by the use of approximations to the forces/accel-
erations at each time step, and their effect on symplectic in-
tegration schemes. We note however that even direct O(N?)
methods are approximations themselves, and good at best to
the number of bits used to represent real numbers, typically 64
(i.e., “REAL*8” in Fortran or “double” in C).
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What constitutes unacceptable error varies with the type and
purpose of the simulation in question. In solar system dynam-
ics, the interest is usually in the reproduction of the gross sta-
tistical behavior of a system rather than the detailed path of
each of the particles. Given the frequent presence of chaos in
simulations of the solar system, its subsystems, or precursors,
such a statistical approach is often the best that can be hoped for,
even given hypothetical error-free integration methods.

We will consider only dissipationless evolution here. The
relative error in the energy and angular momentum thus serve
as practical measures of the integration error. The energy and
angular momentum can be computed directly from the posi-
tions and velocities of the initial and final states. The error in
the angular momentum quoted is the size of the vector dif-
ference between the start and end values (i.e., |Leng — Lstard
not [Lend| — |Lstard)- Methods that conserve these quantities to
high accuracy are generally to be preferred; however, even
very small or zero errors in £ and L do not guarantee the
correct evolution of the bodies in question. Nevertheless, they
do provide a practical and commonly used metric for mea-
suring an integration algorithm’s performance, and we will use
them here, bearing the previous caveat in mind.

Here the suitability of a number of approximate algorithms
will be examined in the particular context of solar system
integrations and symplectic integrators, and our approach
will be an experimental one. Three principal questions are of
interest: What is the error of the different force calculation
methods? What is their relative speed? What is their suitability
for solar system simulations in different regimes?

Section 2 outlines the system and algorithms tested here, § 3
presents the results, and conclusions are drawn in § 4.

2. METHODS
2.1. Direct Methods

There are a number of codes suitable for the integration of
solar system problems that have been made available to the
astronomical community by their creators. In particular, Swift
(Levison & Duncan 1994) and its subset SyMBA (Duncan et al.
1998) and Mercury (Chambers & Migliorini 1997; Chambers
1999) are widely used. The latter two both incorporate the
ability to handle close encounters between particles symplec-
tically. These packages all compute the interaction Hamiltonian
through a direct O(NV?) calculation. As Mercury’s speed scales
the same way in our tests (both analytically and from our
experiments), we present results for SYMBA only, for the sake
of simplicity.

SyMBA, together with the nonsymplectic RADAU integra-
tor (Everhart 1985, as implemented by the Mercury package)
and what we will call the “standard W-H”’ code (i.e., Wisdom-
Holman style, with forces computed directly and without
symplectic handling of close encounters) provide the bench-
marks against which the performance of the other algorithms
will be compared.

Our “standard W-H” code is a traditional Kepler-plus-
interaction leapfrog integrator in Jacobi coordinates, as pro-
posed by Wisdom & Holman (1992), written in C. By replacing
the subroutine that calculates the effects of the interaction
Hamiltonian, the same code also serves as a “driver” for those
algorithms that compute approximate forces but are not them-
selves integrators. Thus the driver allows the approximate
methods to be tested within a traditional symplectic integrator.

The standard code and the driver, being in the original
Wisdom-Holman style, do not handle close encounters well.

Since the large-N systems of interest are likely to involve
significant numbers of close approaches between particles, the
traditional remedy of softening was applied to prevent spuri-
ous heating. This allows comparisons of these simpler meth-
ods with the ones that handle close approaches symplectically.
The latter do not have any softening applied and thus receive a
somewhat different and more demanding test. For the soft-
ening kernel, a potential ® = —GM/(r2 + €2)'2, or Plummer
model, was used, with a fixed ¢ =0.01 AU. This value was
chosen because it is larger than the Hill sphere of all the
particles in the disks considered here. This softening was also
used in all the approximate methods described below except
for FALCON, which uses an adaptive softening (meaning that
the softening is mass-dependent in order to reduce the abso-
lute force error; the Ferrers sphere Fj is used here [see Dehnen
2001, 2002 for more details]).

2.2. Approximate Methods

Direct methods are accurate to near machine precision.
Most other algorithms suffer some degradation in the accel-
erations due to the approximations used. With the choice of a
sufficiently tight tolerance, the exact nature of which may vary
from algorithm to algorithm, the accuracy of approximate
schemes can generally be varied, even up to machine preci-
sion, though this usually results in an effective reversion to a
direct, and hence O(N?), calculation.

There are a wide variety of gravity simulation codes based on
approximate methods currently available. Many of these have
been developed for cosmology or galactic dynamics. Some also
include smoothed particle hydrodynamics (SPH), a technique
that allows the effects of gas to be modeled. Such methods are
likely to be useful when considering the very early solar system,
when gas played a significant role. However, most are not of
sufficiently high accuracy in their force calculations to be likely
to be of use for long-term solar system dynamics, and a com-
plete treatment of them will not be attempted here.

Mesh methods construct a grid in the simulation space,
possibly on finer scales where particles are densest. Particles
are lumped together at the nearest nodes for the purposes of
determining the potential, which can be done very efficiently
through the use of the fast Fourier transform. The resulting
potential is valid only at the grid points, but it can be inter-
polated to provide an approximation of the force on each
particle. Though very fast (Sellwood 1997), they work best on
systems with periodic boundary conditions because of their
use of Fourier transforms. As there are other methods more
suited to isolated systems such as the solar system, we will not
examine mesh methods here.

2.2.1. Tree Codes

Early tree codes were based on hierarchies of body pairs
(Appel 1985; Jernigan & Porter 1989); however, more recent
techniques instead break up the simulation space itself into
individual regions. The now-standard tree code (Barnes & Hut
1986) breaks up the simulation space (the “root” cell) into a
hierarchy of cubic cells, each cell being subdivided into eight
daughter cells until each contains only some small number of
particles, often just one. At each level of decomposition, the
cell’s mass and center-of-mass position are computed. Higher
order multipole moments of the cell’s mass distribution may
also be calculated. Once the tree is constructed, the force on
each particle is determined by examining the largest eight cells
(those just below the root cell) in turn. The ratio of each cell’s
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length / to the distance D between the cell’s center of mass and
the particle is considered. If //D is less than some chosen 6, the
force on the particle due to the cell and all its contents is
approximated by a single body of the cell’s total mass located
at its center of mass (plus higher order moments, if any). If,
rather, I/D > 6 (i.e., the cell is too close), the same test is
applied to the cell’s internal daughter cells recursively down
through the tree.

With a single particle in each cell, it is apparent that the
forces between nearby particles will end up being computed
directly, while those in cells that are sufficiently far away are
replaced for the purposes of the force computation by a single
particle at their center of mass. This allows the computation to
be reduced to O(N log N) operations (Barnes & Hut 1986).
The choice of § (the “opening angle,” usually taken to be of
order unity) determines which particles are far enough for the
center-of-mass approximation to be used, allowing the accu-
racy of the calculation to be varied. Tree codes have already
been used for planetesimal dynamics simulations (Richardson
et al. 2000).

The code tested here is ‘“Partree,” an MPI (Message
Passing Interface) parallel implementation of a tree code in C
due to Dubinski (1996). The serial algorithm is only slightly
modified from the Barnes-Hut model, and the parallelization
technique is based on that of Salmon (1991). In these tests,
instead of the driver discussed in § 2, we used an implemen-
tation of SYMBA modified to incorporate forces from Partree.
The code was run on a single CPU using only the democratic
heliocentric integrator without close-encounter handling to
ensure a fair comparison.

2.2.2. The Fast Multipole Method

The fast multipole method (FMM), sometimes called the
fast multipole algorithm (FMA), computes the forces between
well-separated particles by means of spherical multipole
expansions (Greengard & Rohklin 1987; Cheng, Greengard,
& Rohklin 1999). Consider a group of N/2 particles. To
compute the multipole expansion of their gravitational field
around one of these particles requires O(NM/2) operations,
where M is the number of multipole terms used. Given a
second group of N/2 particles sufficiently far away that the
multipole expansion is valid, the evaluation of the multipole
expansion over these points requires another O(NM/2), for a
total of O(NM), operations. Thus, the far field can in principle
be computed with O(N) effort.

In practice, things are more complicated, as the sorting of
particles into well-separated groups, as well as the final ap-
plication of all their multipole expansions, must be done. In
particular, Greengard & Rohklin (1987) developed a method
of translating all the distant multipole expansions to a local
origin near the particle in question, allowing these far-field
contributions to be combined and thus more efficiently com-
puted. In practice, FMM implementations are often found to
scale as O(N log N) (Cappuzo-Dolcetta & Miocchi 1998).

An implementation of FMM written in C is the Distributed
Parallel Multipole Tree Algorithm (DPMTA; Rankin 1999).
This code was developed within the molecular dynamics com-
munity but is easily adapted to astronomical systems. It com-
putes the force due to nearby particles directly, by constructing
atree and using the traditional opening-angle criterion, and uses
the FMM algorithm to compute the far-field forces.

Its force accuracy can be tuned over a wide range (from a few
digits to full machine precision) by adjusting the number of
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multipole terms and, thus, can in principle produce exact (at
least within round-off) forces as an O(N) process. The force
error of most other approximate algorithms can only be im-
proved by decreasing the opening angle [i.e., increasing the
distance out to which direct O(V?2) force computation is used].
This makes the DPMTA method particularly attractive. If the
number of operations it requires really does grow more slowly
that N2, there must be some N for which it can provide machine-
precision forces faster than the direct method—though this
limit proves to be currently of little practical use (see § 3.3).

DPMTA version 3.1 is tested here, which can be run either
serially or in parallel under either MPI or PVM (Parallel
Virtual Machine). It does not accept a softening length but was
modified (a simple task) to do so for these tests. This was the
only modification made to any of the codes tested here.

DPMTA is not an integrator, but a routine that computes the
interparticle forces, and it was tested with the driver (described
in § 2.1). An opening angle 6 = 0.5 and four multipole terms
were used. DPMTA performs fastest when the tree contains
10-50 particles per cell, so the maximum depth of the tree must
be varied from 4 at small N to 6 at N = 103 to maintain this. The
test systems (to be discussed in § 2.4) were in an overall root
cell 5 AU in extent in the x-, y-, and z-directions.

FALCON [Force Algorithm with Complexity O(N); Dehnen
2000] is similar to DPMTA but differs from it in that it
uses Cartesian multipole expansions to compute the far-
field forces, significantly speeding computation. Also, because
of the symmetry of the Taylor expansion in Cartesian coor-
dinates, along with an implementation that avoids asymmetry
between gravity sources and sinks, this algorithm implicitly
conserves linear momentum. However, FALCON uses a fixed
expansion (up to the octupole), unlike DPMTA, which allows
an arbitrary number of multipole terms.

An adaptive opening angle of 0.5 (see Dehnen 2000 for
more details) was used. The maximum allowed tree depth was
50, and cells in the tree were split when they contained more
than eight particles. The C version of the code released in
2002 October was tested here.

Table 1 outlines the features implemented by each of the
methods.

2.3. Processor and Compiler

All simulations were run serially and in double precision on
one of a cluster of 20 identical 600 MHz DEC Alpha EV56’s
with 64 megabytes of RAM and 256 megabytes of swap space,
running Red Hat Linux 7.1. Fortran codes (SyMBA, RADAU
via the Mercury package) were compiled with the Compaq
Fortran 90 compiler X1.1.1-1684; C codes (Partree and the
W-H code, as well as DPMTA, FALCON, and their driver) were
compiled with the Compaq C compiler, version 6.2-506. All
codes were compiled with the same optimizations. Clearly,
some codes may perform somewhat better or worse with
other processor-compiler combinations; our choice is intended
simply to provide a representative straw-man system as a basis
for comparison.

2.4. Simulated Systems

The test system used in these simulations is a 2.67 M, disk
of material spread with surface density oc ¥~ between 0.3
and 2 AU around the Sun. The disk particles, all of equal
mass, have their initial eccentricity e and inclination i chosen
randomly from uniform distributions such that e € [0, 0.01]
and i € [0°,0°5]. The other angular elements were chosen
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TABLE 1
ALGORITHMS TESTED

Method Softening? Fixed dt? Approaches? Tree? FMM?
DPMTA.......ccocuee. Yes Yes No Yes Yes
FALCON............... Yes Yes No Yes Yes
Partree ... Yes Yes No Yes No
RADAU .....ccceene No No Yes No No
Standard W-H ....... Yes Yes No No No
SYyMBA ......ccoeue No No Yes No No

Note.—A comparison of the different methods, and whether they include softening, have a fixed
time step, handle close approaches in detail, and compute the far field using aspects of tree and/or

FMM methods.

randomly from the uniform distribution [0, 27). This disk is
based on those of Chambers (2001), who used similar disks of
153—158 bodies to study terrestrial planet formation. The
number and masses of particles in the disk used here are
varied, but the total disk mass is constant for all simulations.

Though chosen to model terrestrial planet formation, cold
solid-particle disks are relevant to other areas of solar system
research, for example, the Kuiper and asteroid belts, giant
planet formation, extrasolar planet formation, and planetary
rings. Realistic systems may involve the presence of larger
bodies (e.g., protoplanetary cores, gas giant planets, satellites)
within or near an otherwise smooth disk. However, approxi-
mate force algorithms tend to do less well when the mass
distribution is highly asymmetric. Since the number of larger
particles (n) will be smaller than the number of small ones
(~N), it makes sense to handle large bodies separately by a
direct calculation, which will only be O(nN). There are any
number of ways of doing so, including the use of massless test
particles. Only the most demanding case will be examined
here, that in which all mutual particle interactions are to be
considered.

Our purpose here is not to conduct large-scale simulations
per se, so the length of our integrations is limited in order to
efficiently examine a variety of codes and particle numbers.
For the first suite of simulations, designed to determine the
scaling of the computing time with N, the total number of
particles varies from 10 to 10° but the total simulation time is
only 100 years. The time step is chosen to be 6 days, giving a
minimal 10 steps per orbit for the innermost particles, and a
total of 6088 steps overall.

The second suite of simulations are longer and examine en-
ergy and angular momentum conservation for the different fast
approximate algorithms over time. These simulations run 100
times longer (10* yr) with 103 particles each. Such integrations
are too short to be used in themselves to study either planet
formation (a process that takes tens or hundreds of millions of
years) or the error-induced diffusion of the Hamiltonian system
away from its manifold. Rather, they are designed purely to
examine as much as is practical the accumulation of errors for
the various algorithms employed. This work is intended to
provide an introductory look at the performance of these
methods, not a definitive statement as to their suitability for all
large-N systems under all conditions.

2.5. Parallel Computing

Parallel computing, with its potential for significant speed
advantages, is likely to become important in numerical studies
of the solar system, though it has yet to make much of an
impact. Of the algorithms tested here only DPMTA and Partree,

neither of which was designed for solar system studies, have
parallel implementations. Only the serial versions were used in
these tests.

Parallel codes are typically more sensitive to the details of
the system they are being run on. For example, communication
time may dominate over processing time on clusters with slow
networks. As a result, timing parallel codes is less straightfor-
ward than for serial codes and will be left for future work.

3. RESULTS
3.1. Speed

Since CPU time scales simply with the length of the sim-
ulation (unlike the error), short, 100 yr, simulations are suf-
ficient to compare the speed of the algorithms. The time taken
for these simulations as a function of the number of particles N
is shown in Figure 1. The simulations with the largest N are
impractical to rerun multiple times. However, the shorter ones
(up to N = 10%) were run 10 times for each of the algorithms,
and the median time is shown. The exception was Partree, for
which the standard deviation was determined from the timing
of subsamples (in this case, the timing of individual time
steps) within a single integration run. The execution times have
standard deviations of typically 1%—3%, though sometimes
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slopes expected of methods with the indicated dependencies on N.
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Fic. 2.—Ratio of the execution time for the standard W-H method to that
for the other algorithms, or the “speedup.” Execution times beyond N = 3000
for the W-H method are extrapolated from low N-values.

larger. These variations are due to overhead associated with
the multiuser environment of the computer cluster, which was
shared with other users during our runs.

Figure 2 shows the “speedup,” the CPU time relative to
one that scales strictly as N2, and normalized to unity for
the standard method at N = 10, All the direct codes show the
expected near-O(N?) growth in the computing time as the
particle number is increased.

SyMBA takes about twice as long as standard W-H,
reflecting the extra overhead involved in handling encounters
symplectically. SyMBA and RADAU handle a fundamentally
harder problem than the other algorithms, for which close
encounters have been softened away. RADAU is the slowest
by about a factor of 20, as expected of this high-order non-
symplectic method.

FALCON is the fastest algorithm, with a speedup of 330
at N =10°. Partree has a speedup of 125, and DPMTA 17,
at N=10°. Clearly, this affords these methods a significant
advantage over direct methods at large N. Even at relatively
small N, FALCON and Partree are as fast as direct meth-
ods. The break-even point for the approximate methods is
N ~102-103. The CPU time per step (in milliseconds) and the

TABLE 2
SIMULATION REsuLts: N = 102

CPU per Step 1106 yr

Method (ms) (days)
Standard W-H ........coveiiicicccnnee 2.26 + 0.02 1.60 = 0.01
Partree .........cccoeveeeeeeceneeciceeeenne 295 £ 044 2.08 + 0.31
SyMBA .. 4.65 + 0.03 3.28 + 0.02
FALCON.... 495 £ 0.15 3.48 £ 0.11
RADAU ..... 47.0 £ 5.1 33.1 £ 3.6
DPMTA ...ttt 149 + 2.7 1049 + 1.9

Note.—The median CPU time per step for the 100-particle disk simulations,
as well as the extrapolated time to complete a 10° yr integration. Algorithms are
ranked from fastest to slowest.
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TABLE 3
SmuLaTION REsuLTs: N = 103

CPU per Step 1106 yr

Method (ms) (days)
Partree .....ooceevevevivenieee 65.8 + 8.0 46 + 5.6
FALCON......cviiiieeeieeeee e 73.0 + 3.6 51 £ 2.5
Standard W-H .. 210.6 £ 3.2 148 £ 2.2
DPMTA ...t 303.8 £ 49 214 £ 34
SYMBA ..o 456.6 + 20 321 £ 14
RADAU ..ot 5935 £+ 50 4182 + 35

Note.—The median CPU time per step for the 1000-particle disk simu-
lations, as well as the extrapolated time to complete a 10° yr integration.
Algorithms are ranked from fastest to slowest. Note that the ranking has
changed appreciably from Table 2.

CPU time (in days) required for a million-year simulation at
N=10% and at N =10° are in Tables 2 and 3. The relative
speeds of these algorithms vary quite a lot even going from
N=10%to N =103, owing to their different sensitivities to N.
Though obviously specific to the computer used here, the
results provide insight into the current limits on solar system
integrations at large N.

The slopes X of the lines in Figure 1 are given in Table 4,
indicating that the computational effort, in this implementation
rather than in theory, grows as NX. The slopes are consistent
with expectations, with a few minor variations. RADAU does
worse than N2, but it takes a variable time step that one
expects to decrease, and hence increase the computation time,
as the particle density increases.

DPMTA varies substantially from linear in Figure 1, being
very sensitive to the maximum allowed tree depth (Rankin
1999). This method does have an execution time that, in tests
at low particle numbers, grows slowly with N. However, this
behavior does not persist to large N, where its slope becomes
comparable to that of the tree methods.

The FALCON algorithm both is the fastest overall and shows
the slowest growth with N, even at N= 103, growing only
slightly faster than linear. Though all the approximate methods
outperform direct ones at large N, FALCON has the shortest
execution time by a significant margin, a factor of 2 or more.

3.2. Accuracy

Figures 3 and 4 show the relative error in the total energy £
and the angular momentum L at the end of the 100 yr simu-
lations. More precisely, the average value of the error over the
final 10 yr is shown, in order to mitigate the effects of benign
energy oscillations on the result.

The approximate codes are all competitive with the direct
codes in terms of conservation of energy. The nonsymplectic,

TABLE 4
Fits To N = 102-10° SIMULATION RESULTS

Method Slope (X) Intercept (Y)
FALCON....ccoovvvvriiicne 1.0342 + 0.0199 —0.5087 + 0.0723
DPMTA... 1.0529 + 0.1132 +0.4560 + 0.4109

1.2509 £ 0.0155
2.0041 £+ 0.0223
2.0195 £+ 0.0169
2.2143 £ 0.0662

—1.1942 £+ 0.0562
—2.8863 + 0.0624
—2.5992 £+ 0.0473
—2.0130 £ 0.1850

Norte.—Least-squares fitted slopes and intercepts to the CPU times
plotted in Fig. 1, so that logz ~ Xlog N+ Y.
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variable—step-size RADAU algorithm outperforms all others
by about 3 orders of magnitude or more. However, the real
test of energy conservation will come in the longer runs.
Symplectic methods have appreciable but bounded long-term
energy errors; this may be disrupted in the long term by in-
accuracies in the force calculations.

The approximate methods perform poorly in terms of
conservation of angular momentum L, relative to direct ones.
This is not simply an effect of softening, as the standard W-H
code also shows very good angular momentum conservation.
Any symplectic algorithm should, by construction, conserve
angular momentum to machine precision. FALCON, though it
conserves L less well than direct methods, does better than
other approximate methods.
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We note here again that the SyMBA and RADAU codes
undergo a more rigorous test, having to deal with close ap-
proaches in detail (i.e., no softening): for example, they handle
about 1200 close approaches over 100 years for the 3000-
particle simulations.

The relative error is generally seen to decrease with in-
creasing N. This effect can be related to the summation of
larger numbers of smaller errors, with a consequent reduction
in their total. A full treatment is complex, but the Plummer
softening used here produces behavior that closely matches
the N=973 to N=077 dependence found for the energy error by
Athanassoula et al. (2000) and Dehnen (2001), respectively.
FALCON’s adaptive softening should allow a slightly sharper
decrease (~N~98). This is a small difference, but Figure 3
does show a somewhat larger overall drop in FALCON’s
energy error than the other methods’.

A plot of error in E versus that in L for the all simulations
performed is presented in Figure 5. Each point represents one
of the simulations with N in the range 102-10°. Though
obtained after simulations of only 100 years, the plot provides
a general feel for the capabilities of these algorithms. Their
accuracy will be examined in more detail with the longer term
simulations presented below.

3.2.1. Long Integrations

Figures 6 and 7 show the error evolution over 10 yr for a
1000-particle disk for the different methods, with the excep-
tion of RADAU, which because of its slowness was only run
for 2000 years of simulated time. The runs with standard W-H
and FALCON were extended to 10° and 10 yr, respectively,
to better observe the long-term error evolution.

The approximate methods show error growth comparable to
that of traditional methods over the entire simulation. The
energy errors of the simulations performed with DPMTA and
FALCON match those of the direct methods quite closely.
However, we note that symplectic integrators display an in-
herent oscillation in the energy, which can be reduced through
the use of symplectic correctors (Saha & Tremaine 1992;
Wisdom, Holman, & Touma 1996). This effect (which is not
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and to bring to light the underlying trends.

usually called the “error,” this term being reserved for any
secular trend in the average value of the energy) sets a limit on
the usefulness of the energy as a measure of accuracy. The value
of |dE/E| for the W-H code effectively measures the size of this
oscillation. Thus, two similar curves on this plot do not nec-
essarily indicate that the algorithms conserve energy “‘equally
well,” only that any secular energy drift these methods might
suffer is much less than the energy oscillation. Nonetheless, the
similarity of the |dE/E| curve to that from the direct method is a
necessary, if not sufficient, condition for an approximate force
algorithm to be considered for use.

As for angular momentum (Fig. 7), the traditional methods
substantially outperform the approximate ones. Orders of
magnitude separate even the best fast methods from the O(N?)
ones. Despite this fact, the error growth curves are well be-
haved. In particular, their slopes are otherwise often close to
those of the standard methods. Thus, though certainly out-
performed accuracy-wise by the traditional methods in both £
and L, the methods show a well-behaved error growth, which
provides some confidence in their reliability, if only over a
restricted span.

3.3. Machine Precision

DPMTA is the only approximate algorithm tested here that
allows the force errors to be reduced nearly to round-off without
reverting to an O(N?) calculation. All the algorithms allow the
opening angle 6 to be reduced severely, but this simply results
in the forces’ being computed by the direct method over large
regions of the space (rather than just locally), effectively
reverting to an O(N?) process.

However, DPMTA allows an arbitrary number of multipole
terms to be used in the force calculation (FALCON always
employs a fixed number of terms, up to the octupole) while
remaining an O(N) [or at least faster than O(N?); see § 2.2.2]
process. FMM may actually do better than the direct method
in terms of accuracy, as the latter involves the superposition of
large numbers of partially canceling forces of varying direc-
tions and magnitudes, with an associated accumulation of
round-off errors.

Vol. 127

We investigate the effect of increasing the number of mul-
tipole terms M on the accuracy of the result provided by
DPMTA. Our earlier tests only used M = 4 and yet were much
slower than other approximate methods. As a result, we expect
that the code will run even more slowly with more multipole
terms. Nevertheless, the possibility of reaching machine ac-
curacy with an algorithm for which the number of computa-
tions grows more slowly than O(N?) provides a tantalizing
prospect.

In order to get directly at the force accuracies, we compute
the force (or more precisely, the acceleration) errors. We take
the direct N? calculation as our reference and examine the
variation as a function of M for a single “kick™ step for the
N =103, 104 and 10° disks. The number of digits of accuracy
of the DPMTA acceleration is plotted in Figure 8 for opening
angles 6§ = 0.3, 0.5, and 0.7. Note that this value is based on
the mean acceleration error over all particles and must be
interpreted with some care. The distribution of errors is es-
sentially bimodal (local field done to machine accuracy, far
field done approximately by FMM), and an average may not
characterize it particularly well. However, particles with very
small net interparticle-induced accelerations necessarily have
large relative errors, and more conservative metrics such as the
worst case provide little information on the algorithm’s real
performance. Note that only a limited number of simulations
were performed at N = 10°, as the memory required for the
deeper tree and large number of multipoles exceeded that of
our test machine.

For a given 0, the force error is relatively insensitive to N and
saturates at machine precision at the top of the graph. The
smaller opening angles achieve better accuracy for a given
number of multipoles, since they compute a relatively large
region directly, using the multipole expansion only for the most
distant regions of the disk. The two smallest disks achieve very
close to the same accuracy for a given M, whereas the N = 103
disk does slightly poorer. This is likely the result of the addi-
tional tree levels (six in total) needed at N = 103, as opposed to
the four used for both the smaller disks (§ 2.2.2). The addition
of these deeper levels, needed to maintain the speed of the
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algorithm, results in the space’s being decomposed into smaller
cells, thus diminishing the region around each particle satisfy-
ing I/D < 6 (i.e., diminishing the region in which direct force
calculations are performed).

If the force error is near round-off, then we expect that
DPMTA'’s accuracy will be comparable to those of the direct
methods. This was confirmed by running some 100 yr simu-
lations of the N = 103 disk at different f-values (Fig. 9). The
energy “error” levels off as a result of the small intrinsic
energy oscillations inherent in the symplectic method, but the
angular momentum error drops to round-off as the force errors
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Fic. 9.—Relative error in E (solid lines) and L (dashed lines) after 100 yr
as a function of M for the N = 10 disk with the DPMTA method. The energy
error is flat as a result of the energy oscillations of the symplectic method, but
the angular momentum errors go to round-off as the force errors (Fig. 8) do the
same.
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do the same (Fig. 8), confirming that DPMTA is doing as well
as the direct method.

Since equal force accuracies can be achieved for different
combinations of 6 and M, which is the fastest option? The
answer depends on the value of N. DPMTA breaks the force
calculation into an FMM part and a direct part, which scale
differently with N. At lower 6, the direct calculation encom-
passes a larger volume, and the FMM calculation a smaller
one, giving weight to the O(N?) term. Thus, we expect the
CPU time to rise more sharply with N at smaller 6. In fact,
tests show that while the CPU time required scales roughly as
N for #=0.7 and § = 0.5 (Table 4), it has increased to ~N 1>
at 6 = 0.3 for the disks tested here.

Figure 10 plots the CPU time required to generate forces
with a given level of accuracy. For the smaller disk, smaller
values of 6 achieve the same accuracy faster because the
multipole calculation, despite its good scaling with N, still takes
the bulk of the time at N = 103. In this case, a smaller value of ¢
is to be preferred, but regardless of this value, DPMTA is
slower than the direct method. For the larger disks, the differ-
ences between values of 6 become less, though appreciable at
higher accuracies. Thus, even at N = 10° DPMTA cannot yet
produce double-precision forces faster than the direct method.
Nevertheless, DPMTA continues to scale well and seems likely
to surpass the direct method in the vicinity of N = 10°.

Though FMM approaches hold great promise owing to their
superior scaling with N, they remain too slow at the small
particle numbers currently feasible to provide a good alternative
to direct methods for high-accuracy applications, though with
continuing improvements in algorithms and computer hard-
ware, this gap will eventually close.

In a system where collisions are frequent and dissipation is
important, errors in the handling of these processes are likely
to exceed those in the integrator itself. In this case, one might
be justified in using lower accuracy forces, with the accuracy
parameters adjusted so that the error due to the integrator is
less than or of order that in the other aspects of the simulation.

For large-N disks, DPMTA can provide reduced accuracy
forces faster than the direct method. If, for example, only eight
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digits of accuracy (Fortran “REAL*4” or C “float”) are
deemed adequate, DPMTA breaks even with the direct method
at N=10* and does better at N =10 (Fig. 10). DPMTA is
expected to outperform the direct method by an even larger
margin at lower accuracy and larger N. Thus, the tunable ac-
curacy of FMM may make it an important tool for specific
research niches, though one should be aware that other ap-
proximate methods may be competitive in these regimes.

4. CONCLUSIONS

Solar system integrations have to strike a balance between
the accuracy of a simulation and the speed of the algorithm
used. New approximate force algorithms can provide sub-
stantial increases in speed with a concomitant loss of accuracy.
However, even O(N?) methods do not provide infinitely ac-
curate forces: round-off ensures that. Nevertheless, computa-
tions performed in double precision are generally considered
“good enough™ for much solar system research.

It should be noted that if a real system of N’ particles is
modeled by a simulation of N < N’ bodies, the discreteness
inherent in any N-body approach fundamentally limits the
accuracy. It may be of limited usefulness to compute the force
with extreme accuracy at discrete time intervals if the repre-
sentation of the constituent population suffers inherent fluc-
tuations produced by the (artificial) graininess of the simulated
particle distribution.

On the other hand, one of the most compelling features
of symplectic integrators is the belief that for a sufficiently
small (and fixed) step size there usually exists a “surrogate
Hamiltonian™ for which a simulated particle’s trajectory is an
exact solution to within round-off. That is, the integrated sys-
tem is the true solution of a Hamiltonian that differs from the
true Hamiltonian by small terms, which often oscillate in time.
Thus, a potentially fruitful approach would be to construct a
Hamiltonian that is “sufficiently close” to the true interaction
Hamiltonian and from which the derived forces can be quickly
computed to machine accuracy using an order-N algorithm.
Attempts to pursue this idea have met with limited success
to date.

Approximate methods do have the advantage of allowing,
through their input parameters, for the balance between speed
and accuracy to be varied. Thus, these algorithms can be tuned
to some extent to the problem being studied. Whether an

approximate algorithm is appropriate for any given simulation
is a question that can only be answered on a case-by-case
basis. However, approximate force calculation methods can
certainly provide substantial increases in speed, albeit at N
larger than a few hundred. In some cases, only a modest in-
crease in energy error, and a relatively larger one in angular
momentum, results from the use of approximate algorithms.
This larger error may make these methods unsuitable for some
studies (e.g., long integrations of the planetary system).
Methods such as the FMM algorithm allow for arbitrarily high
accuracy to be achieved and are thus competitive with direct
methods in terms of accuracy. They also scale very well with
N and thus become more attractive at large particle numbers.
However, their poor performance at the low values of N cur-
rently practicable make them currently unsuitable for solar
system simulations, though this situation is likely to improve
in the near future.

At large N, highly optimized algorithms such as FALCON
provide for substantial speed increases with good accuracy, at
least relative to other approximate methods. In certain regimes,
the improved approximation to the actual particle distribution
allowed by significantly larger values of N is likely to outweigh
any losses due to reduced accuracy. Though this is a tantalizing
possibility, the question “How accurate is accurate enough?”” is
not always easy to answer.

All currently feasible approximate methods, including FMM
at below machine precision, show errors that, though not dra-
matically so, are larger than those of direct methods. As a result,
the breaking of the symplecticity of the method becomes a
serious concern. However, in environments where dissipation
(e.g., due to collisions or drag) already plays some role, the loss
of accuracy resulting from approximate force algorithms could
well be dwarfed by uncertainty associated with these other
processes. Though they must be used with some caution, ap-
proximate force algorithms are likely to provide a valuable tool
for solar system research.

We would like to thank the authors of the various codes
tested here for making the results of their efforts available to
the wider community. This work has received ongoing support
from the Natural Sciences and Engineering Research Council
of Canada and NASA.
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