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Abstract 

 We describe the growth of surface immobilized gold nanoparticles with organometallic 

chemical vapour deposition (OMCVD) on amine terminated surfaces, utilizing 

(trimethylphospine)methylgold ((CH3)3PAuCH3) precursor. Samples fabricated using different 

deposition times were characterized by UV-Vis spectroscopy and scanning electron microscopy. 

Particle stability on the samples was tested by washing and rinsing treatments with various organic 

solvents. A biotin-streptavidin scheme was applied to demonstrate the biosensing capabilities of the 

samples. The size, interparticle distance, and shape of the gold nanoparticles demonstrated that 

OMCVD is a simple, economic, and fast way to fabricate surface bonded and stable gold nanoparticles. 

The plasmonic properties, the stability of the particles and the biotin-streptavidin test showed that these 

OMCVD-grown gold nanoparticles are suitable for reproducible, low noise and highly sensitive 

biosensing applications. 
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1. Introduction 

Gold nanoparticles (AuNPs) serve in a variety of scientific, medical and engineering applications, for 

example acting as biosensors,[1]–[3] catalysts for nanowire or nanotube growth,[4]–[7] and 

photovoltaics.[8]–[10] In addition to their plasmonic properties,[11]–[14] the chemical properties of gold 

make them highly suitable for label free, extremely sensitive biosensor applications.[15][16] 

Although colloidal gold is easy to synthesize, it has many disadvantages over substrate immobilized 

AuNPs. Besides the potential environmental and health impact of solution-based “free” AuNPs, they 

require a stabilizing agent to prevent aggregation. Typically a citrate layer or a polymer coating is used 

to create a core-shell structure.[17] The introduction of this stabilization agent surface chemistry makes 

further functionalization for the application complicated. Substrate immobilized colloidal gold 

nanoparticle (AuNP) samples inherit the same problem. In addition, due to its liquid nature, colloidal 

gold requires additional handling considerations for lab-on-a-chip applications. Moreover, the 3D form 

of colloidal gold requires a higher volume of sample for sensing applications in comparison to “2D” 

surface immobilized particles.  

Conventional substrate immobilized gold nanoparticle (AuNP) fabrication methods such as focused ion 

beam or electron beam lithography require costly setups and also suffer from low speed and small area 

of coverage. For prototype purposes, these drawbacks can be neglected. However, for industrial or 

clinical applications mass production is necessary; cost-effective, simple, and fast methods are required. 

Chemical vapor deposition (CVD) is a well-studied method to produce thin films on substrate 

surfaces[18][19][20] mainly used in microelectronic technology.[21] In the last two decades nanotechnology 

started to take advantage of various forms of CVD in many different fabrication purposes. Although 

nanotubes[22][23] and nanowires[24][25] are the most known nanostructures produced by CVD, a variety of 

other structures has been reported, such as AuNPs,[26][27] AuNP/semiconductor and AuNP/titania 
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composites,[28] AuNP/transition metal composites,[29] SiO2 sandwitched AuNP arrays,[30] AuNP doped 

vanadium dioxide thin films,[31] and titanium dioxide/tin dioxide nanocomposites.[32] 

Organometallic precursors form metallic thin films on substrate surfaces.[18][33][34] Under certain 

conditions, film growth follows an island formation scheme, which is also known as Volmer–Weber 

growth[36]. Interrupting the procedure before forming thin films yields metallic nanoparticles. 

[19][27][34][35] In terms of wetting conditions, the Volmer–Weber growth mechanism can be expressed 

mathematically by the Young-Dupre equation [36]: 

𝛾ௌ௏ = 𝛾஼ௌ + 𝛾஼௏𝑐𝑜𝑠𝜃  [1] 

In this equation γSV is substrate-vacuum surface energy, γCS the substrate-film interface energy and γCV 

the film-vacuum surface energy (Figure 1).  

 

Figure 1- Wetting angle and surface energies in Volmer-Weber growth 

 

For values of θ higher than 0° attractive forces between the two deposited metal atoms are higher than 

the forces between the substrate and the deposited metal atom. Therefore a stable film structure is not 

favorable but island growth occurs.[36] 

CVD is a surface chemistry selective process, meaning the substrate surface can be functionalized, 

creating areas with and without film growth.[33][34][37][38] The desired surface functionalization to create 

nucleation sites can be achieved for example, by a self-assembly process; dithiols are used on metallic 
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surfaces and silanes on oxidized surfaces to form self-assembled monolayers (SAMs).[39] The stability 

of the AuNPs grown by OMCVD strongly depends on the quality of the self-assembled monolayer 

(SAM). The localized surface plasmon resonance (LSPR) frequency of AuNPs lies in the visible part of 

the electromagnetic spectrum; therefore, the substrate should be transparent for transmission-based 

plasmonic sensors applications. Although glass substrates are high quality and widely used for similar 

purposes, our studies show that functionalization of the glass surface by employing wet silane 

chemistry is especially challenging.[40] The self-assembly process is very sensitive to experimental 

conditions, including temperature and humidity, which decreases batch-to-batch reproducibility and 

stability of the AuNPs on the surface.[41]–[44] When flushing is required for a biosensor application in a 

liquid handling system, the immobilization stability of the particles, the ability to not being moved by 

the liquid, is especially crucial. Poor quality of the SAM causes particles to be physisorbed on the 

surface, missing the chemical bonds to the substrate. These physisorbed particles can then be moved by 

the sensor solution, and cause undesired optical effects in the biosensor application. Typically, NP 

aggregation on the surface occurs, creating false signals or, due to detachment and loss of particles, a 

decrease in signal and/or in the signal-to-noise ratio emerges.[40] 

In this study, we introduced the growth of stable AuNPs on amine functionalized BK7 glass surfaces 

via OMCVD using (trimethylphospine)methylgold ((CH3)3P]AuCH3) precursor. Amine groups are 

known for their strong affinity to gold.[17][45] Several studies were reported immobilizing colloidal 

AuNPs on aminosilane functionalized surfaces.[25][46]–[48] Hexamethyldisilazane (HMDS) silanization is 

a standard process in lithography to enhance photoresist adhesion.[49] In order to create nucleation sites 

for growth of AuNPs by OMCVD, surface functionalization of the substrate was achieved by vapor 

deposition of HMDS in a totally environmentally controlled vapor deposition oven, instead of wet 

chemistry in a glove box. We systematically varied the OMCVD time to investigate the time 

dependence of the size and interparticle distance properties of these randomly positioned AuNPs. The 
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samples fabricated with different OMCVD times were characterized by UV-Vis absorption 

spectroscopy and scanning electron microscopy. Correlations between growth time, size, interparticle 

distance, and UV-Vis absorption maxima were established. Stability tests were performed by washing 

and rinsing cycles using various organic solvents to simulate liquid handling systems in sensor 

applications. The biosensing capabilities of the stable OMCVD-grown AuNP samples were tested by 

implementing the well-known biotin-streptavidin system[50]. 

 

2. Results 

Figure 2a shows absorption spectra of eight individual samples grown for 15 min in the OMCVD 

reactor. The maximum of the absorption spectrum corresponds to the localized surface plasmon 

resonance (LSPR) peak. The averaged absorption spectra for the eight samples in each batch for the 

various OMCVD times are depicted in Figure 2b. Figure 2c shows the position of the absorption peak 

maximum with increasing growth time. With increasing OMCVD time, the LSPR peak shifted to the 

red with increased standard deviation.  
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Figure 2 - Spectral properties of AuNPs fabricated by OMCVD: a) absorption spectra of eight samples 
from a single batch with an OMCVD growth time of 15 min, b) averaged absorption spectra for 
different OMCVD times averaged over all samples in the batches, c) spectral LSPR position as a 

function of OMCVD time 

 

Since differences between absorption spectra of samples within the same batch were negligible 

compared with differences between samples from different batches with increasing OMCVD times (Fig. 

2c), one sample from each batch was selected and electron microscopy images were taken of eight 

locations uniformly distributed on these samples (Fig. 3a, inset). Figure 3a is an SEM image with 

20,000 x magnification showing the uniformity at a wide area. A 100,000 x magnification allowed 

observation of the shapes of the individual nanoparticles (Fig. 3b). For lower OMCVD times, AuNPs 

were round (Fig. 3b, bottom). Increasing the OMCVD time yielded nanoparticles with corners, or even 
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star shapes exhibiting clear crystalline facets (Fig. 3b, top) which indicates the crystalline structure of 

OMCVD grown AuNPs on SH terminations as previously reported.[27] 

 

Figure 3 - Scanning electron micrographs of AuNPs grown on –NH functionalities: a) view at large 
scale (tOMCVD= 15 min). The inset shows the sample geometry and the positions where the eight higher 
resolution images were taken. b) High magnification of samples fabricated with OMCVD times from 

13-23 min. 
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Figure 4 - Size and distance distribution of AuNPs: a) area histogram of 13 min OMCVD sample, b) 
center-to-center distance histogram of 15 min OMCVD sample, c) box plot of calculated diameters of 
the samples with various OMCVD time (assuming round objects in all cases), d) box plot of center-to-
center distance with OMCVD time, e) calculated border-to-border distance as a function of OMCVD 

time with standard error. For both diameter and distance measurements, the error bars show the 
standard deviation, the boxes show the 25% to 75% intervals of the data, and the small square dots 

show the mean values. 
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The size and distance between individual AuNPs were analyzed in the scanning electron micrographs. 

Figure 4a is a representative example showing the area distribution of the 13 min OMCVD sample as 

measured and analysed by SEM. Figure 4b shows the distribution of the center-to-center interparticle 

distance for the 15 min OMCVD sample. For the other batches with increased OMCVD time, the shape 

of the histograms remained the same, although the particle size shifted to higher values and larger 

variation in size was observed.  

Low OMCVD times led to growth of small particles, increasing time yielded larger particles with less 

uniform size distributions. Figure 4c shows the diameter distribution of the particles based on a 

calculation of the diameter from the area. Although not all AuNPs obtained by growth for 18 min or 23 

min were round, their areas were approximated as circles to give a clear sense of size when the data 

were converted to diameters. The calculated average diameter increased from ~11 nm to ~17 nm in a 

linear fashion by increasing the growth time from 13 to 23 min, implying a growth kinetic constant of 

roughly 0.5 nm/min. 

The average center-to-center distance between the AuNPs increased with reaction time and reached a 

plateau (Fig. 4d). As depicted in Figure 4e, the mean border-to-border distance, calculated from the 

diameter and interparticle distance distributions, increased up to 18 min and then decreased slightly.  

It is critical to ensure the stability of the particles used in biosensor applications. The absorption spectra 

of our samples remained unchanged within the error range of the spectrometer after applying all rinsing 

cycles in the stability tests. Changes in the absorption maximum were lower than 0.1 nm which is the 

measurement error of the experiment. AuNP formation is also observed for cleaned glass samples 

without HMDS functionalization. However, the LSPR vanished after the stability tests indicating that 

the AuNPs did not stay on the surface. They were washed off, indicating a poor attachment to the 

surface. AuNP formation and deposition can be completely avoided by functionalizing the surface with 

–CH3 (see Experimental: surface functionalization of the OMCVD reactor). 
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Figure 5 - Streptavidin concentration response of OMCVD AuNP-based sensor. The black line 
represents the base line, the yellow line the detection uncertainty, and the red line the base line plus 

three times the detection uncertainty.  

 

Figure 5 shows the sensor response of the high affinity system biotin-streptavidin. The biotin 

recognition site is immobilized on the AuNPs and the streptavidin is detected due to its binding to the 

biotin moieties[50]. The dipolar LSPR spectral position versus increasing streptavidin concentration was 

investigated on samples with a growth time of 15 minutes giving ~13 nm of mean particle diameter and 

23 nm of average border to border distance. Between 10 ng/ml to 100 μg/ml concentration range the 

limit of detection was calculated by the 3σ method[51] and was found to be better than 10 ng/ml (~200 

pM). 
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3. Discussion 

The high affinity of gold to amine has been used in multiple cases for the immobilization of gold 

colloids, however the precise chemical mechanism has not been discussed.[17][25][45]-[48] The –NH 

terminated surface investigated here obviously serves as a growth surface for OMCVD of AuNPs; 

nucleation and growth happens. It is not within the scope of this work to determine the exact reaction 

mechanism of the Au-precursor to the available –NH groups, however we assume a favourable 

interaction between the lone electron pair of the nitrogen on the sample surface and the Au(I) in the 

precursor. Gold exists in various oxidation states. Au(I), for example as present in the implemented 

precursor, forms numerous complexes of which many are stable, but also easily undergo ligand 

exchange reactions.[52] The (CH3)3P]AuCH3 precursor is a donor-acceptor complex[53], potentially  

involving Lewis acid (LA)- Lewis base (LB) interaction. We propose for the first growth step a 

surface-ligand-exchange reaction, where the phosphorous group of the precursor, -P-(CH3)3 (the LB of 

the precursor) is displaced by the nitrogen group –NH (the new LB) on the surface. With this first step, 

the LB Au-CH3 is immobilized at the surface via the Au(I) whereas the phosphorous group is released 

into the gas phase. The binding constants from Au(I) to the -P-(CH3)3 was found to be 242.42 kJ/mol 

experimental and 250.37 kJ/mol theoretical, respectively[53]; whereas the binding energy of Au+-NH3 

was found to be 265.86 kJ/mol[54], larger in comparison to the phosphorous. The binding energy of 

Au(1)-NH may be even larger. 

In a second step, due to the high gold-gold affinity, the Au of a second precursor molecule may bind to 

the immobilized gold species. When the oxidation state of the Au nucleus changes into a Au(0) state 

cannot be demined without additional experiments. 

Due to the LSPR phenomenon, the size, interparticle distance and shape of the AuNPs determine their 

absorption spectrum.[11]–[14] Therefore, UV-Vis absorption spectroscopy provides an easy and 

economical way to characterize such samples. The LSPR peak shifted to the red with increasing 

OMCVD time, indicating that the particle size increased, the interparticle distance decreased, and/or 
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the particle shape changed from a round to a more angular shape.[11][12] The increase in the observed 

standard deviation indicated that increasing the growth time increased the inhomogeneity of the 

samples.  

For all samples and all batches, the relative standard deviation in the particle number observed in the 

images for the eight locations was less than 10%, which indicated homogeneity of the particle 

distribution along the surface. Figure 3a is an SEM image with 20,000 x magnification showing the 

uniformity at a wide area. A 100,000 x magnification allowed observation of the shapes of the 

individual nanoparticles (Figure 3b). For shorter OMCVD times, AuNPs were round (Fig. 3b, bottom). 

Increasing the OMCVD time yielded nanoparticles with corners, or even star shapes (Fig. 3b, top). 

Round particles are useful for transmission-based plasmonic sensor applications and nanowire 

growth.[7][55] Particles with corners are suitable for surface enhanced Raman spectroscopy (SERS) 

applications, due to hot spot formation around the edges.[56]–[60] 

The size and distance between the AuNPs are important parameters for plasmonic sensors, and the 

LSPR properties of the particles strongly depend on them. Narrow particle size distribution is usually 

desired for biosensor applications. If the LSPR band increases in width, errors in determining the 

absorption peak spectral position increase which decreases the limit of detection.[61] Although OMCVD 

is a statistical process, the box plot in Figure 4c shows a narrow size distribution comparable with 

colloidal gold produced by the citrate reduction method.[62] On the other hand, limit of detection 

calculations with the biotin-streptavidin platform showed that size distribution allows biosensor 

applications. 

Increase in the average center-to-center distance between the AuNPs with reaction time (Fig. 4d) 

showed that for the shorter times, AuNPs were individually well separated. With increasing time, close 

particles merged, forming a single larger particle. This merging increased the average interparticle 

distance until most particles were large and again well separated. The shape of the border-to-border 
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distance curve is a result of close-particle-merging and increase in the particle size by time. After 18 

min, most of the close particles had merged (Fig. 4d), and therefore, the center-to-center distance did 

not increase anymore. However, the diameter of the nanoparticles kept increasing, which decreased the 

border-to-border distance after 18 min (Fig. 4e), creating hot spots for surface enhanced Raman 

spectroscopy[56][57] and enabling optical cross-talk as a sensing mechanism for transmission-based 

sensors.[3][26][37] Such a close spacing of ~20 nm between the particles has not been achieved by 

conventional fabrication methods such as electron beam lithography or focused ion beam lithography. 

Fabrication of AuNPs with a precise size is possible by adjusting the OMCVD time. However, it 

should be noted that increasing OMCVD time will yield less uniformity in shape, size, and interparticle 

distance. Higher reaction times will lead to connected AuNPs, creating islands and eventually yielding 

a thin film of gold.[19] 

For a quick and economic characterization process, it would be valuable to learn about the size 

distribution of the AuNPs by UV-Vis absorption spectra. Figure 6 shows the relationship between the 

spectral peak position of the LSPR and the diameter of the AuNPs. The spectral position of the LSPR 

showed a linear relationship to the average diameter. 



14 

 

 

Figure 6 - Relationship between wavelength of the LSPR absorption maximum and the average 
particle diameter of the AuNPs. 

 

Amine functionalized samples with AuNPs were stable against washing/rinsing experiments simulating 

liquid handling conditions. This showed that the particles are chemically bonded to the surface. 

Absence or poor quality of the HMDS SAM on the substrate caused loosely attached AuNPs; the 

particles “float”, aggregate, or move away from the surface.[40] Losing of particles decreases the 

strength of the LSPR of the sample and decreases the signal-to-noise ratio in the absorption spectrum. 

Aggregation of the particles causes cross-talk, which appears as a shoulder in the absorption spectrum 

or widens the LSPR peak, leading to larger errors and higher noise if the dipolar LSPR peak is used to 

determine the sensor signal. 

LSPR of AuNPs is highly sensitive to changes in the refractive index of the surrounding environment, 

which is the phenomenon behind the plasmonic sensors. Biotinilated-thiol is the linker molecule 
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between the AuNPs and streptavidin.[50] As the concentration of the protein streptavidin increases, the 

surface coverage of streptavidin on the biotin labels on the nanoparticles increases appearing as a red 

shift in the LSPR absorption maximum. The limit of detection is 10 ng/ml (~200 pM) being in the same 

order of magnitude than other nanoparticle surface plasmon resonance sensors reported.[2][63][64] This 

proof of principle experiment can easily be modified by using appropriate linker chemistry to detect 

any important biomolecule. The dependence on the linker chemistry, especially the dependency on the 

particular binding constant, and the AuNP size must be optimized for each individual sensor to achieve 

the highest possible sensitivity. To employ the optical cross-talk in a sensor scheme additionally the 

AuNP interparticle distance must be optimized.[65] 

4. Conclusion 

We have introduced a new, simple and inexpensive approach for fabricating highly stable AuNPs via 

OMCVD on amine functionalized glass surfaces. Increasing the OMCVD time yielded larger particle 

sizes and closer border-to-border spacing. Round particles were transformed to angular particles and 

their size became less uniform with increased deposition times. Increasing size, decreasing spacing and 

a change into angular shapes caused a red shift in the LSPR of the AuNPs. Therefore, we were able to 

establish a relationship between the AuNP attributes and their absorption spectrum. Vapor phase 

deposition of HMDS in an oven provided reproducible and high quality amine functionalization. 

Washing and rinsing cycles with various solvents to simulate the liquid handling conditions of 

biosensor applications did not cause a change in the absorption spectra of the samples, indicating that 

the AuNPs were stably held in position on the substrate. Biotin-streptavidin recognition experiments 

showed the biomolecule sensing capabilities of the samples. AuNPs fabricated by OMCVD could be 

used for biosensor applications; however, the effect of size, shape and interparticle distance on 

fundamental sensor parameters such as limit of detection and sensitivity must be investigated and fine-

tuned for each individual linker-chemistry applied. 
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The effect of various temperatures and pressures used in the OMCVD process in terms of the size, 

shape and interparticle distance of the resulting particles needs further investigation. It is expected that 

a decrease in reaction temperature will slow the growth rate, so that fine tuning, especially for smaller 

particles, will become feasible. Control of interparticle spacing and improved uniformity may also be 

achievable. The interparticle distance could be adjusted independently using various techniques for 

sensor tunability, such as manipulating the binding sites with FIB[63][64] or using binary mixtures of 

HMDS and OTS.[66]-[68] 

These stable OMCVD AuNPs can also be used where substrate immobilized bare AuNPs are required, 

e.g. for the growth of nanowires and fabricating photovoltaic devices. Depending on the application, 

different substrates can be used as long as amine functions can be bonded to the surface. This process 

itself does not involve any wet chemistry nor ion beam technology; it is therefore advantageous for 3D 

samples with a complicated surface geometry, and can direly be applied in lab-on-a-chip technology. 

5 Experimental 

5.1. Fabrication of AuNP samples 

All chemicals were used without further purification. BK7 (Hellma, Germany) glass slides (8 x 12 mm) 

were immersed in Nano-Strip solution (Cyantek Inc., CA, USA) at 60°C for 20 min to remove possible 

contaminants. Substrates were then rinsed with abundant amounts of Milli-Q water (MilliPore, MA, 

USA), dried with nitrogen, and placed in an STS Reactive Ion Etch system (STS Surface Technology 

Systems, Newport, UK) in an oxygen plasma at 80 W for 20 min to oxidize the substrate surface, 

creating –OH functionalities (Fig. 9a). The hydrophilic nature of the samples was confirmed by contact 

angle measurements (θ < 2°) (Reme-Hart Model 200 Ganiometer, Reme-Hart Co. NJ, USA). For 

surface functionalization with –NH groups, silanization of the substrates with 100% HMDS (Fig. 7a) 

(Transene Inc., MA, USA) in a YES-3TA HMDS vacuum oven (Yield Engineering, CA, USA) was 
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carried out. The contact angle θ, measured as 68.9° ± 0.6°, confirmed the surface modification.  

 

Figure 7 - Structure formula of compounds implemented in AuNP sample fabrication and to yield an 
inert glass reactor: a) hexamethyldisilazane (HMDS), b) the organometallic gold precursor 
trimethylphosphinegoldmethyl ([(CH3)3P]AuCH3), and c) octadecyltrichlorosilane (OTS) 

 

The inner surface of a glass reactor (Figure 8) was functionalized wet chemically with 

octadecyltrichlorosilane (OTS) (Fig. 7c), which forms a non-growth surface. This SAM avoids gold 

deposition on the inner walls of the reactor.[38] This procedure increases the efficiency of the AuNP 

growth process by avoiding unnecessary precursor consumption. First, the OMCVD glass reactor was 

filled with freshly prepared piranha solution (1:3 v:v H2O2:H2SO4). It was given two hours to oxidize 

the inner surface (creating –OH functionalities). The reactor was then rinsed with copious amounts of 

Milli-Q water, dried with nitrogen, and placed in a vacuum oven at 95°C for 20 min to remove any 

moisture from its surface. A 1:500 v:v mixture of OTS (97%, Sigma, Ontario, Canada) in toluene 

(Caledon Lab. Inc, Georgetown, ON, Canada) was freshly prepared. The OMCVD reactor was filled 

with the OTS solution overnight under an argon environment in a glove box. After SAM formation the 

reactor was rinsed with toluene and placed in a vacuum oven at 95°C for 20 min to form silane bonds 

and expel toluene from the reactor surface. 
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Figure 8 - Illustration of the OMCVD setup 

 

Amine functionalized substrates were placed on the reactor’s flat glass bottom as well as a small watch 

glass containing 20 mg of the organometallic gold precursor trimethylphosphinegoldmethyl 

([(CH3)3P]AuCH3) (Fig. 6b). The synthesis of the precursor is described elsewhere.[69] Uniform thermal 

contact between the reactor bottom and the samples is guaranteed by the flat-bottom reactor. Even 

temperature distribution along the surface of the substrate yields a uniform nucleation site density, 

which provides homogenous growth over the surface. The reactor was pumped down to >5 Pa and 

filled with argon for three cycles to ensure an inert atmosphere inside the reactor. During the last cycle, 

the internal pressure was set to 5 Pa. The reactor was placed in a water bath preheated to 65°C for 13, 

15, 18 and 23 min. After the deposition period, the reactor was immediately vented and the samples 

with the grown AuNPs were removed. 
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Figure 9 - Surface modification scheme: a) substrate with oxidized surface after piranha treatment; b) 
silane network after HMDS functionalization; c) AuNPs on the substrate without chemistry details of 

the HMDS layer (not to scale) 

 

5.2. Characterization 

UV-Vis absorption spectra were obtained using a LAMBDA 850 UV-Vis recording spectrophotometer 

(PerkinElmer, Ca, USA). The absorption spectrum of a blank BK7 glass was used as a reference. 

Scanning electron micrographs were acquired by a Leo 1530 scanning electron microscope (LEO 

Electron Microscope, Zeiss, Germany). Prior to imaging, samples were coated with 1 nm of osmium to 

make them conductive. ImageJ[70] software was used for processing the images. The area and two-

dimensional center of mass data were extracted from the images to calculate the distribution of the 

center-to-center interparticle distance using a nearest neighbour algorithm.  

5.3. Stability tests 

Two samples from each batch corresponding to different OMCVD growth times were rinsed with 

anhydrous ethanol several times to remove physisorbed particles, and then dried. After acquiring a UV-

Vis absorption spectrum, the samples were immersed and rinsed repeatedly with methanol, isopropanol, 

and dichloromethane and then immersed in Phosphate Buffered Saline (PBS) buffer and rinsed with 

Milli-Q water and isopropanol. 
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5.4. Biosensing  

Samples were immersed in 0.45 mM 11-mercaptoundecanol (Sigma-Aldrich, Ontario, Canada), an OH 

terminated thiol, and 0.05 mM biotinylated thiol (NanoScience Chemicals, Phoenix, AZ, USA) in 

anhydrous ethanol solution for two hours to form a SAM with biotin moieties. Repeated washing with 

ethanol was followed by drying the sample with nitrogen. The samples were immersed first in PBS 

buffer and then in increasing concentrations of streptavidin in PBS buffer. 
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