Chapter 11. Polymer Structures

Polymers: materials consisting of long molecules

- the word "polymer" comes from the Greek

Macromolecules (long size of the chains)

- typically, the molecules are organic and held together by covalent C-C bond
- adjacent "chains" are held together by secondary (vdW) bonding
- may be additional covalent bonds between chains (referred to as crosslinks)

Chapter 10 in Smith & Hashemi Chapter 14 in Callister

Chapter 11

Natural vs man-made

There is a very wide range of polymer types:

Polyethylene **Proteins**

Polyvinyl chloride Rubber

Spider silk (gossamer, is a fiber

spun by spiders)

Polytetrafluoroethylene (Teflon)

Polycarbonate

DNA

Good control over the properties!!!

Chapter 11

Hydrocarbon: the simplest polymers

Saturated

 $\mathsf{C}_{\mathsf{n}}\mathsf{H}_{\mathsf{2n+2}}$

Unsaturated

 C_nH_{2n}

 C_nH_{2n-2}

As the molecule gets longer, the melting temperature goes up

CH ₄ (C1)	-182.5°C	C12	-9.65°C
C ₂ H ₆ (C2)	-183.5°C	C23	48°C
C ₃ H ₈ (C3)	-189.7°C	C37	71°C
C ₄ H ₁₀ (C4)	-138.7°C	C60	96°C
C ₆ H ₁₄ (C6)	-95.3°C	Chapter 11	

How do you synthesize a polymer?

General reaction of chain polymerization:

If a particular type of polyethylene has an average molecular mass of 150,000g/mol, what is its degree of polymerization?

Chapter 11

Chain polymerization steps

1. Initiation step: by free radical formers $(R \bullet)^*$, typically organic peroxides

*A free radical can be defined as an atom (often part of larger group, that has an unpaired (free) electron

Chain polymerization steps (2 and 3)

2. Propagation (there is still an active site, so process continues)

3. Termination

Chapter 11

Molecular Weight

- Polymers have very high molecular weight (MW)
- For polymer, molecular weight is always a distribution
- Can plot a histogram
- suppose we have 16 polymer chains, with $\rm M_{\rm mer} = 100$

Number-Averaged MW

Chapter 11

Molecular Structure

Since monomers are the building blocks, their chemical composition and functionality will influence the structure and properties of the polymer

- if during polymerization monomer forms bonds in 2 directions, we call it $\ensuremath{\text{\textbf{bifunctional}}}$
- if monomer uses three active bond to form network (3D) polymer material, we call it ${\bf trifunctional}$
- 1. Linear polymers
- 2. Branched polymers
- 3. Crosslinked polymers
- 4. Network polymers

Chapter 11

Homopolymers and Copolymers

- Homopolymer: a polymer consisting of only one type of monomeric unit
 take unit A ⇒ polymer ...AAAAAAAAAAA...
- Copolymers: a polymer chain consisting of 2 or more types of monomeric units
 - take units A and B

Four distinct types of copolymers can be identified:

B B B B B B B

Chapter 11

17

Other Polymerization Methods

 Stepwise Polymerization: monomers chemically react with each other to produce linear polymers; often small molecules (H₂O) are produced as by product

• Network Polymerization: chemical reactant attacks more than 2 sites

Chapter 11 18

Geometrical Isomerism

Geometrical isomers are possible within mer units with double bond between chain carbon atoms

cis structure

trans structure

Chapter 11

19

Stereoisomers: molecular compounds that have the same chemical composition, but different structural arrangement

Random (atactic isomer)

All methyl groups on the same side (*isotactic* isomer)

Methyl groups on the alternating sides (syndiotactic isomer)

Ziegler & Natta catalysts

(metallocene)

Chapter 11

Classification scheme for polymer molecules

Chapter 11

21

Crystallinity in polymers

Thermoplastic polymers: a plastic material that require heat to make it plastic (formable) and upon cooling retains its shape

No sudden decrease in specific volume

Slop is changing at the **glass transition temperature**

Distinct specific volume drop during cooling of partially crystalline polymer

Chapter 11

Structure of Partially Crystalline Polymers

The longest dimension of crystalline regions in polycrystralline polymeric materials is usually ~5-50nm

 \Rightarrow much less compared to the fully extended length

Chapter 11

