Chapter 12

Composite Materials

Composite material: a material system composed of a mixture or combination of two or more micro- or macro *constituents* that differ in *form* and *chemical composition* and are essentially *insoluble* in each other

Chapter 12 in Smith & Hashemi

Additional resources: Callister, chapter 16

1

Classification Scheme

Composites

Chapter 12

2

Particle-reinforced composites

Concrete: ceramic composite material composed of coarse granular material (aggregates) embedded in a hard matrix of a cement paste (binder)

Cross section of hardened concrete

Cement: CaO, SiO₂, Al₂O₃, Fe₂O₃ Small amount of CaSO4 2H2O added to control the *setting* time

Chapter 12

3

Wood

Macrostructure: strength of wood is highly anisotropic, tensile strength much higher in the direction parallel to the tree stem

Annual growth rings

- A. Outer bark (dry, dead tissue, protection layer)
- B. Inner bark (soft, carrier of moisture and food to leaves)
- C. Cambium layer (formation of wood and bark cells)
- D. Sapwood (contain cells for food storage and carry sap from the roots)
- E. Heartwood (most strength)
- F. Pith (soft tissue)
- G. Wood rays (connect pith and bark)

Chapter 12

ļ

Microstructure of the softwood

Symmetry considerations:

The axis parallel to the tree stem: **longitudinal axis**

The axis perpendicular to the tree

stem: radial axis

The axis parallel to the annual

rings: tangential axis

- Long, thin-walled tubular cells (tracheids) L=3-5mm, D = 20-80μm
- Large open space in the centre (lumen) : fluid conduction

SEM of softwood (pine), x75

Adapter from Smith&Hashemi

Microstructure of the hardwood

Hardwoods: have large diameter vessels for the conduction of fluids

Scanning electron micrograph of ringporous hardwood (American elm), x54

Adapter from Smith&Hashemi

Chapter 12

- Long fibers L=0.7-3 mm, D = <20 μ m Fibers are closed packed together to
- Fibers are closed packed together to leave an empty space for fluid transfer
- vessel elements (aligned in the longitudinal direction of the tree)

← Vessel elements are larger for EW; smaller for LW

)

Wood cell "molecular structure"

Primary wall: forms during cell division

Cell grows in longitudinal and transverse direction

When growth is completed: secondary wall forms in concentric layers (S $_1$, S $_2$, and S $_3$) into the centre of the cell

Principle constituents:

Cellulose (45-50%) of wood solid material Hemicellulose (20-25%)

Lignin (25-35%) complex 3D cross-linked polymer formed from phenolic units

7

Mechanical Strength of Wood

Moisture content is important!

Green wood shrinkage eliminate moisture and causes distortion

(more shrinkage in transverse direction)

	Density, g/cm ³	Modulus of elasticity, GPa	Compression parallel to grains, MPa	Compression perpendicular to grains, MPa
Elm (green)	0.46	7.7	20.1	2.5
Elm (dry)	0.50	9.3	38.0	4.8
Pine (dry) softwood	0.34	7.0	16.8	1.5
S.Steel	7.9	193	760	

Chapter 12

8

Young's Modulus for Composites for Isostrain and Isostress Conditions

Chapter 12

a

Q: Calculate the tensile modulus of elasticity of a unidirectional carbon-fiber-reinforced-plastic composite material that contains 64 % by volume of carbon fibers and is stressed under isostrain conditions. The carbon fibers have a tensile modulus of elasticity of 54.0×10^6 psi and the epoxy matrix a tensile modulus of elasticity of 0.530×10^6 psi.

Chapter 12

10

