
Chapter 13

Functional Nanomaterials (2D, 1D, and 0D)

Pure or doped **highly anisotropic crystalline** metals, semiconductors or insulators with a lateral dimension of 5-100nm

- 1. Growth mechanism and processes
- 2. Structure: directionality and epitaxy
- 3. Organization and Assembly

Motivation

Small size, low dimensionality and high surface to bulk ratio make nanowires ideal for many technological applications

- Electronics: transistors
- · Photonics: lasers,
- LEDs
- Sensors: chemical, biological, photon, motion, etc.
- Nanoprobes for SPM
- · Catalysis, filters, exotic devices....

Tools for studying nanowires:

- Microscopy: SEM, TEM, AFM and STM
- Spectroscopy: infra-red, X-ray diffraction, X-ray photoemission

1. Growth methods

Two approaches

Top-down

Patterning in bulk materials by combination of

Lithography

Etching

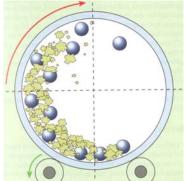
Deposition

- can be applied for variety of materials
- limited by lithography resolution, selectivity of etching, etc.

Bottom-up

Structure is assembled from well-defined chemically or physically synthesized building blocks

Self-assembly


Selective growth

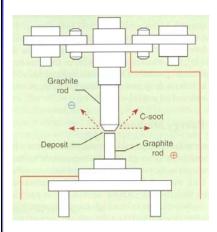
- require accurate control and tunable chemical composition, structure, size and morphology of building blocks
- in principle limited only by atomic dimensions

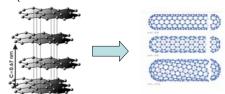
Mechanical Methods (Mechanosynthesis)

Low cost fabrication: ball milling or shaker milling

Kinetic energy from a rotating or vibrating canister is imparted to hard spherical ball bearings (under controlled atmosphere)

- (1) Compaction and rearrangement of particles
- (2) First elastic and then severe plastic deformation of the sample material \Rightarrow formation of defects and dislocations
- (3) Particle fracture and fragmentation with continuous size reduction ⇒ formation of nanograined material


$$K_{IC} = Y \sigma_F \sqrt{\pi a} \qquad \sigma_F \sim \frac{1}{Y} \sqrt{\frac{K_{IC}}{a}} \sim \sqrt{\frac{\gamma E}{a}}$$


 $\sigma_{\rm F}$ – stress level, when crack propagation leads to fracture; γ - surface energy of the particle; $a\,$ - length of a crack

-material with defects with a wide distribution of size

High-Energy Methods: Discharge Plasma Method

Application of high energy electric current (monochromatic radiation – laser ablation)

Can be used for fullerenes and C nanotubes

Process depend on:

-Pressure of He, process temperature, applied current

final product requires extensive purification

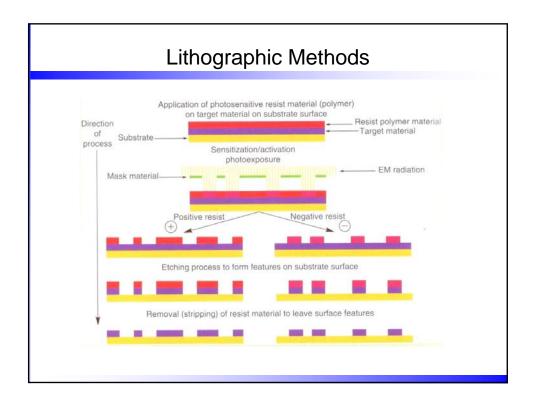
Chemical Fabrication Methods

Anodizing (and electropolishing)

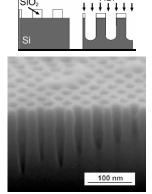
Insulating porous oxide layer is created on a conductive metal anode in electrolytic

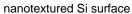
Anodic reaction $2AI_{(s)}^0 \rightarrow 2AI_{(s)}^{3+} + 6e$

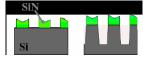
Oxide-electrolyte interface 2 Al $^{3+}$ + $3H_2O \rightarrow 2$ Al $_2O_3$ + $6H^+$

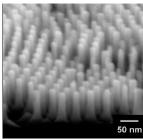

Cathodic reaction $6H^+ + 6e \rightarrow 3H_2$ (g)

Overall oxide formation reaction:

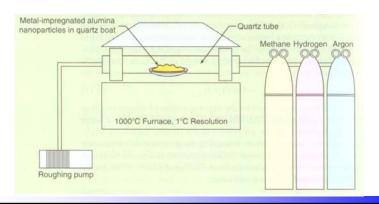

$$2\mathsf{AI^0}_{(\mathsf{s})} + 3\mathsf{H}_2\mathsf{O} \to \mathsf{AI}_2\mathsf{O}_3 + 3\;\mathsf{H}_2$$


Porous Al₂O₃ membranes can be considered as ultimate template material

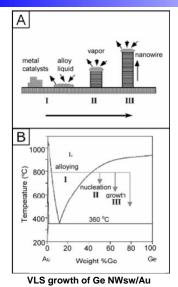




Top-bottom: High-Aspect Aspect-Ratio Si Structures

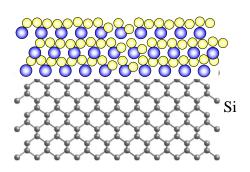


dense silicon pillar array


Bottom-Up Fabrication: Gas Phase Methods

Chemical Vapour Deposition

$$\begin{split} & \text{CH}_4 \text{ (g)} \rightarrow \text{SWNT} + \text{H}_2 \text{ (g)} & \sim 700^{\circ}\text{C, Fe, Ni catalysts} \\ & \text{SiH}_4 \text{(g)} \rightarrow \text{Si} + 2 \text{ H}_2 \text{ (g)} \\ & \text{Si(OC}_2 \text{H}_5)_4 \text{ (g)} \rightarrow \text{SiO}_2 \text{(s)} + (\text{C}_2 \text{H}_5)_2 \text{O (g)} \end{split}$$

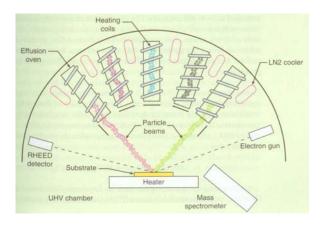

Bottom-up: vapor-liquid-solid growth

- Metal particle catalyzed the decomposition of a gaseous species containing the semiconductor components, e.g. Ge, or Ga and As
- Metal catalyst particles absorb species, becoming saturated with them at eutectic point (relatively low temperature)
- When semiconductor reaches supersaturation, it precipitates out of the eutectic
- Metal prepared and deposited/grown on surface
- Metal droplet size determines eventual wire diameter

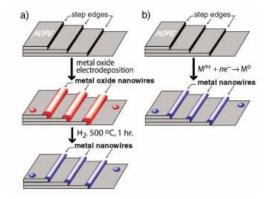
(from E. Garfunkel)

Atomic Layer Deposition

- 1. MCI₄ exposure
- 2. Purge
- 3. H₂O exposure
- 4. Purge \Rightarrow MO₂ ML


 $MCI_4(ads, surf) + 2 H_2O(g) \rightarrow MO_2(s) + 4HCI(g)$

 $M(N(CH_3)(C_2H_5))_4(ads, surf) + O_3(g) \rightarrow MO_2(s) + ...$

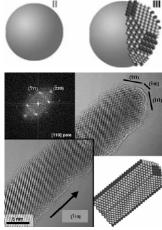

- •Surface saturation controlled process
- •Excellent film quality and step coverage

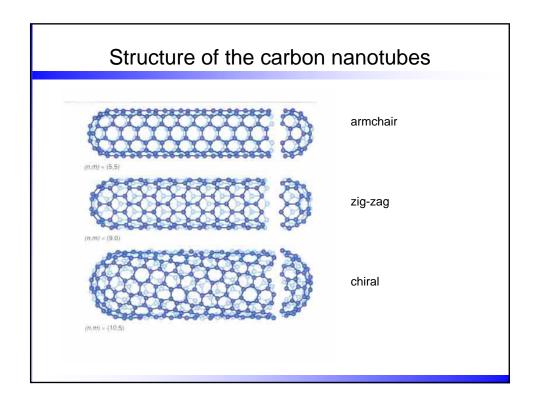
Molecular Beam Epitaxy (MBE)

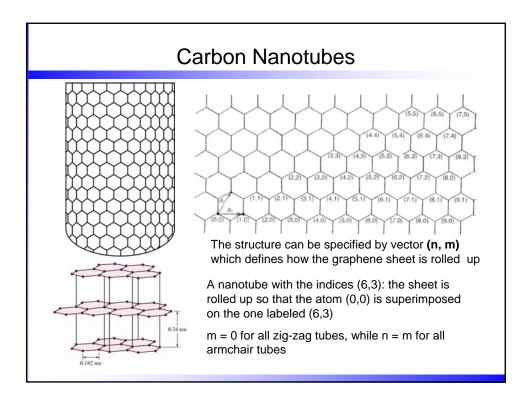
Molecular Beam Epitaxy – a single crystal film growth technique

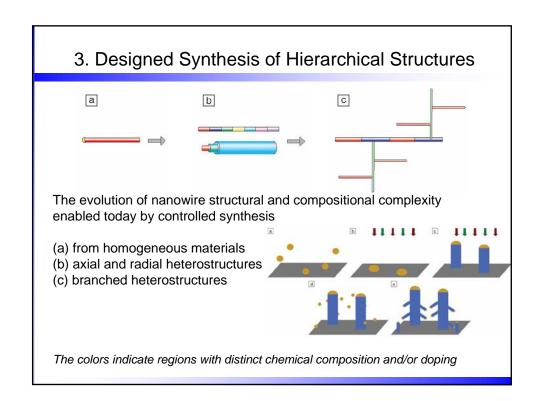
Electrochemical step decoration

- minimization surface energy of the step
- metal oxide electrochemical deposition + reduction (H2)
- metal electrochemical deposition


2. Preferred crystallographic orientation


Proposed explanation:


- For small diameter VLS nanowire, the surface energy minimization of the Si or Ge cap influences the Si NW nucleus structure and the growth direction during NW nucleation event
- Alternatively, Au/Si interface decides growth direction, <111> is favored for the lowest-freeenergy (111) solid – liquid interface.



For <110> growth aixs, the solidliquid interface is still (111), but surface energetics may drive the nucleation of a second (111) plane to enable <110> growth, which yields the lowest energy solid/vacuum interfaces

Organization and Assembly of Nanowires

Using a patterned catalyst, NWs can be directly grown on a solid substrate in a designed configuration

NW materials produced under synthetic conditions optimized for their growth can be organized into arrays by several techniques

- (1) electric field directed (highly anisotropic structures and large polarization)
- (2) fluidic flow directed (passing a suspension of NWs through microfluidic channel structure)
- (3) Langmuir–Blodgett (ordered monolayer is formed on water and transferred to a substrate)
- (4) patterned chemical assembly or imprint

a) PDMS Doly-L-lysine Doly-L-l