Chapter 14

Bioinspired and Natural Nanomaterials

- Velcro® inspired by seeds' clingy burrs
- IMOD Display Technology inspired by butterfly wings
- Low-friction ship hulls inspired by shark skin
- Temperature-adapting fabric inspired by pinecone
- Dirt- and water-resistant paint inspired by the lotus flower
- Neuromorphic computer chips inspired by neural networks

Chitin: hard translucent material

Chemical or Physical Color (Iridescence)

J. Genzer, A.Marmur, MRS Bulletin 33 (2008) 742.

Simple electromechanical model

Competition between electrostatic force and elastic restoring force

Chapter 12

9

Hysterisis

- Hysteresis loop gives the memory effect
- Allows an array to be addressed in a line-at-a-time fashion
- Image is maintained once the array is addressed

Sacrificial layer removal

General mechanism:

$$Sac_{(s)} + 2XeF_{2(g)} \longrightarrow SacF_{x(g)} + Xe_{(g)}$$

where $Sac_{(s)}$ = sacrificial layer material, e.g. Me, Si, etc.

Example:

$$Si_{(s)} + 2XeF_{2(g)} \longrightarrow SiF_{4(g)} + 2Xe_{(g)}$$

∆H°=-1289 kJ/mol

Chapter 12

13

Superhydrophobicity

The contact angle formed between a droplet and a solid surface is a result of the equilibrium between three surface tensions: solid-vapor $\gamma_{\rm SV}$, liquid-vapor

 $\gamma_{\text{LV}},$ and solid-liquid γ_{SL}

$$\cos\Theta = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}}$$

Wenzel relationship:

$$\cos\Theta_A = r\cos\Theta_T$$

r- the roughness ratio, defined as the true surface area divided by the geometric area of integration;

 $\Theta_{\rm A}$ – actual angle; $\Theta_{\rm T}$ = theoretical (Eq. above)

200 mm 20

14

A Model Artificial Lotus Leaf

- Two scales of topography are important

