Chapter 3: The Structure of Crystalline Solids

Crystal:
a solid composed of atoms, ions, or molecules arranged in a pattern that is repeated in three dimensions.

A material in which atoms are situated in a repeating or periodic array over large atomic distances.

3.1 Classification

- **Crystalline materials**
 - atoms (ions or molecules) in repeating 3D pattern (called a lattice)
 - long-range order; ex.: NaCl,

- **Amorphous (noncrystalline) materials**
 - Short range order, not periodic; ex.: liquid water, glass

- **Fractals**
 - Long-range order, symmetry, but not repeating

- **Liquid crystals**
 - long range order of one type; disorder of another
 - Nematic and smectic
Chapter 3

Translational Symmetry

Consider perfect ideal solid

The translational group represented by space lattice or Bravais net

Lattice sites defined by:

\[l = l_1 a_1 + l_2 a_2 + l_3 a_3 \]

The actual definition of a unit cell is to some extent arbitrary

NB: atoms do not necessarily coincide with space lattice

Chapter 3

Space lattice

Positions of atoms in crystals can be defined by referring the atoms to the point of intersection with 3D coordinate system

Such network is called space or crystal lattice

In ideal crystal the grouping of lattice points about any given point are identical with the grouping about any other lattice point in the crystal lattice

Chapter 3
Unit cell

The size and shape of the unit cell can be described by three lattice vectors: \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) or the axial lengths \(a, b, c\) and interaxial angles \(\alpha, \beta, \gamma\).

NB!!!: atoms do not necessarily coincide with lattice points.

How to choose unit cell?

Unit cell: a convenient repeating unit of a crystal lattice; the axial lengths and axial angles are the lattice constants of the unit cell.

Wigner – Seitz cell: place the symmetry centre in the centre of the cell; draw the perpendicular bisector planes of the translation vectors from the chosen centre to the nearest equivalent lattice site.
Crystal systems (7)

<table>
<thead>
<tr>
<th>Crystal system</th>
<th>Axial lengths and interaxial angles</th>
<th>Space lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>Three equal axes at right angles</td>
<td>Simple cubic</td>
</tr>
<tr>
<td></td>
<td>$a = b = c$, $\alpha = \beta = \gamma = 90^\circ$</td>
<td>Body-centered cubic</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>Three axes at right angles, two equal</td>
<td>Face-centered cubic</td>
</tr>
<tr>
<td></td>
<td>$a = b \neq c$, $\alpha = \beta = \gamma = 90^\circ$</td>
<td>Simple tetragonal</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>Three unequal axes at right angles</td>
<td>Body-centered tetragonal</td>
</tr>
<tr>
<td></td>
<td>$a \neq b \neq c$, $\alpha = \beta = \gamma = 90^\circ$</td>
<td>Simple orthorhombic</td>
</tr>
<tr>
<td>Rhombohedral</td>
<td>Three equal axes, equally inclined</td>
<td>Base-centered orthorhombic</td>
</tr>
<tr>
<td></td>
<td>$a = b = c$, $\alpha = \beta = \gamma = 90^\circ$</td>
<td>Base-centered orthorhombic</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>Two equal axes at 120º, third axis at right angles</td>
<td>Simple hexagonal</td>
</tr>
<tr>
<td></td>
<td>$a = b \neq c$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$</td>
<td>Simple hexagonal</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>Three unequal axes, one pair not at right angles</td>
<td>Simple monoclinic</td>
</tr>
<tr>
<td></td>
<td>$a \neq b \neq c$, $\alpha = \gamma = 90^\circ + \beta$</td>
<td>Base-centered monoclinic</td>
</tr>
<tr>
<td>Triclinic</td>
<td>Three unequal axes, unequally inclined and none at right angles</td>
<td>Simple triclinic</td>
</tr>
<tr>
<td></td>
<td>$a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^\circ$</td>
<td>Simple triclinic</td>
</tr>
</tbody>
</table>

Crystallographic point group – set of symmetry operations, (ex.: rotations or reflections), that leave a point fixed while moving each atom of the crystal to the position of an atom of the same kind

Chapter 3

14 Bravais Lattices
230 lattices or spacegroups

Lowest in symmetry #1:

<table>
<thead>
<tr>
<th>Short International symbol</th>
<th>Schönflies symbol</th>
<th>Spacegroup number</th>
<th>Full International symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 lattices or spacegroups</td>
<td>$P 1$</td>
<td>C_1</td>
<td>Triclinic</td>
</tr>
<tr>
<td>$a \neq b \neq c; \alpha \neq \beta \neq \gamma \neq 90^\circ$</td>
<td>1</td>
<td>$P 1$</td>
<td></td>
</tr>
</tbody>
</table>

Even higher symmetry structure

<table>
<thead>
<tr>
<th>Short International symbol</th>
<th>Schönflies symbol</th>
<th>Spacegroup number</th>
<th>Full International symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F d \bar{3} m$</td>
<td>O_h</td>
<td>227</td>
<td>$F 4_1/d \bar{3} 2/m$</td>
</tr>
<tr>
<td>ORIGIN CHOICE 1: origin at $-\frac{1}{8}, -\frac{1}{8}, -\frac{1}{8}$ from centre of</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplicity: 192</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metallic crystal structures (will talk about metal oxides later)

- >90% of elemental metals crystallize upon solidification into 3 densely packed crystal structures:
 - Body-centered cubic (bcc)
 - ex.: Fe, W, Cr
 - Face-centered cubic (fcc)
 - ex.: Cu, Ag, Au
 - Hexagonal close-packed (hcp)
 - ex.: Zr, Ti, Zn

Important to know:

- Distance between atoms (d)
 - in terms of a

- Number of atoms in the unit cell
 - each corner atom shared by 8 cells: 1/8
 - each face atom shared by 2 cells: ½
 - each edge atom shared by 4 cells: 1/4

- Coordination number
 - Number of nearest neighbours (n.n.); for metals all equivalent

- Atomic Packing Factor (APF)
 \[
 \text{APF} = \frac{\text{Volume of atoms in unit cell}}{\text{Volume of unit cell} (a^3)}
 \]
Chapter 3

Coordination number

The number of atoms that surround a central atom in a solid is called **coordination number**

<table>
<thead>
<tr>
<th>C.N. = 3</th>
<th>C.N. = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corners of triangle</td>
<td>Corners of tetrahedron</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.N. = 6</th>
<th>C.N. = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corners of octahedron</td>
<td>Corners of cube</td>
</tr>
</tbody>
</table>

Chapter 3

Body-Centered Cubic (bcc)

Distance between atoms:

Atoms/cell:

Coordination number:

Atomic Packing Factor (APF):
Chapter 3

Face-Centered Cubic (fcc)

Distance between atoms:

Atoms/cell:

Coordination number:

Atomic Packing Factor (APF):

Chapter 3

Hexagonal close-packed (hcp)

Distance between atoms: \(a \) and \(c \)

Atoms/cell:

Coordination number:

Atomic Packing Factor (APF):

Chapter 3
Density calculations

- Calculate theoretical density of gold (Au), if the molar density is given: \(w = 0.1970 \text{ kg/mol} \); and \(a(Au) = 0.408 \text{ nm} \)

3.4 Atom coordinates in the cubic unit cell

- \((0, 0, 0) \)
- \((1, 0, 0) \)
- \((0, 1, 0) \)
- \((0, 0, 1) \)
- \((1, 1, 1) \)
- \((1, 1, 0) \)
- \((1, 0, 1) \)
- \((0, 1, 1) \)
- \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \)
Chapter 3

Face-Centered Cubic (fcc)

8 Cu
(0, 0, 0) (½, ½, 0)
(1, 0, 0) (0, ½, ½)
(0, 1, 0) (½, 0, ½)
(0, 0, 1) (½, ½, 1)
(1, 1, 1) (1, ½, ½)
(1, 1, 0) (½, 0, ½)
(1, 0, 1)
(0, 1, 1)

Sodium Chloride (NaCl)

Chapter 3
Strontium titanate (Sr$_x$Ti$_y$O$_z$)

3.5 Directions in cubic unit cell

The crystallographic direction indices [u, v, w] - the vectors of the direction resolved along each of the coordinate axes and reduced to the smallest integers.

$[2, 0, 0] = [1, 0, 0]$
Examples:

- Parallel direction vectors have the same direction indices:
 ex.: determine the direction indices of the cubic direction shown

- Directions are crystallographically equivalent if the atom spacing along each directions are the same
 ex.: \([100], [010], [001], [-100], [0-10], [00-1] = \langle100\rangle\)
3.6 Miller indices for crystallographic planes in cubic unit cells

- **Miller indices** of a crystal plane are the reciprocals of the fractional intercepts that the plane makes with the crystallographic x, y, and z axes.
- Most important crystallographic planes: (100), (110), (111)

(100)
- Intercepts: 1, ∞, ∞

Atomic Packing in Different Planes

- **bcc** (100) (110) (111)
- **fcc** (100) (110) (111)
Chapter 3

fcc crystallographic planes

Cu (100)

Anisotropy of properties in two directions

Chapter 3
Chapter 3

fcc crystallographic planes

Cu (111)

3 fold symmetry

Chapter 3

STM (Scanning tunneling microscopy)

Cu (100)

Atomically resolved STM of Cu(100)

Cu (111)

Custom Low Temperature UHV STM image of atomic resolution pattern on Cu(111). Image taken at 4.2K.

Chapter 3
Crystallographic planes

- Single plane \((h \ k \ l)\)

- Notation: planes of a family \(\{h \ k \ l\}\)
 \[(100); (010); (001); \ldots \Rightarrow \{100\}\]

- Only for cubic systems: the direction indices of a direction perpendicular to a crystal plane have the same Miller indices as a plane.

- Interplanar spacing \(d_{hkl}\):
 \[d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}\]

3.7 Planes in hexagonal crystals

4 coordinate axes \((a_1, a_2, a_3, c)\) of the HCP structure (instead of 3)

Miller-Bravais indices - \((h \ k \ l)\) – based on 4 axes coordinate system

- \(a_1, a_2, a_3\) are 120° apart: \(h \ k \ i\)
- \(c\) axis is 90°: \(l\)

- 3 indices (rarely used):
 \(h + k = -l\)
 \((h \ k \ i) \Rightarrow (h \ k \ l)\)
Basal and Prizm Planes

Basal planes;
\[a_1 = \infty; a_2 = \infty; a_3 = \infty; c = 1 \]
\[\Rightarrow (0 \ 0 \ 0 \ 1) \]

Prizm planes: ABCD
\[a_1 = +1; a_2 = \infty; a_3 = -1; c = \infty \]
\[\Rightarrow (1 \ 0 \ -1 \ 0) \]

Directions in hexagonal crystals

\[[u, v, t, w] \text{ or } [u, v, w] \quad u + v = -t \]
3.8 Comparison of crystal structures

FCC and HCP metal crystal structures

- (111) planes of fcc have the same arrangement as (0001) plane of hcp crystal
- 3D structures are not identical: stacking has to be considered
FCC and HCP crystal structures

FCC
- B plane placed in voids of plane A
- Next plane placed in voids of plane B, making a new C plane
- Stacking: ABCABC…

HCP
- B plane placed in a voids of plane A
- Next plane placed in a voids of plane B, making a new A plane
- Stacking: ABAB…

3.9 Volume, planar, and linear density unit cell calculations

Volume density of a metal can be obtained by using the hard-sphere atomic model for the crystal structure unit cell

\[
Volume_density_of_metal = \rho_v = \frac{mass/\text{unit_cell}}{volume/\text{unit_cell}}
\]

Q.: Copper has an fcc crystal structure and an atomic radius of 0.1278 nm. Assuming the Cu atoms to be hard spheres that touch each other along the face diagonal of the fcc unit cell, calculate a theoretical value for the density of Cu in kg/m³.
3.10 Allotropy and polymorphism (=..?)

Allotropy – the ability of element to exist in two or more crystalline structures

Fe: bcc \Rightarrow fcc \Rightarrow bcc

In case of compound it is called **polymorphism**

Carbon allotropic forms: ?

1. diamond
2. graphite
3. fullerene or buckyballs
4. nanotubes or buckysheets

Carbon and its allotropes

Diamond

- Cubic structure
 $(0, 0, 0)$ $(1/2, 1/2, 0)$ $(1/4, 1/4, 1/4)$
- Covalently bonded sp^3 orbitals
- Isotropic
- Stiffest, hardest (?) and least compressible
- High thermal conductivity
- But… no electrical conductivity
Graphite

- Hexagonal structure
- Covalently bonded sp^2 orbitals and weak secondary bonds between planes
- Anisotropic
- High thermal and electrical conductivity (in plane)
- Bad thermal and electrical conductivity (between plane, along c axis)

Fullerenes (Buckyballs)

- Discovered in 1985 by Harry Kroto and Richard Smalley while blasting graphite with a laser (C_{30} to C_{100})
- 12 pentagons and 20 hexagons
- Crystallize in fcc structure
- Isotropic
- Bonding: covalent and van der Waals forces
Carbon nanotubes

- hexagonal
- properties depend on the structure
- more later…

The structure can be specified by vector \((n, m)\) which defines how the graphene sheet is rolled up.

A nanotube with the indices \((6,3)\): the sheet is rolled up so that the atom \((0,0)\) is superimposed on the one labeled \((6,3)\).

- \(m = 0\) for all zig-zag tubes, while \(n = m\) for all armchair tubes.
Summary

- Unit cells, crystal systems and lattices
- Atomic coordinates and number of atoms in the unit cell
- Crystallographic directions and crystal planes
- Coordination numbers

- Finding distances between atoms and planes, and characteristic angles
- In order to find all this parameters: X-ray diffraction, electron microscopy (later)

Chapter 3

Problems

3.1. Molybdenum is bcc and has an atomic radius of 0.14nm. Calculate a value for its lattice constant a in nanometers.

3.2. Figure below illustrates unit cell of diamond crystal structure.
 (a) How many carbon atoms are there per unit cell?
 (b) What is the coordination number for each carbon atoms? (C.N is the number of equidistant nearest neighbors to an atom in a crystal structure)

3.3. Draw direction vectors in unit cubes for the following directions: (a) [111], (b) [1-1-1], (c) [-12-1], (d) [-1-13]

3.4. Define the Miller indices of the cubic crystal plane that intersects the following position coordinates: (a) (1/2, 0, 1/2); (0, 0, 1); (1, 1, 1); (b) (0, 0, 1/2); (1, 0, 0); (1/2, 1/4, 0)

3.5. Draw in unit cubes the crystal planes that have the following Miller indices: (a) (1-1-1); (b) (10-2); (c) (1-21), (d) (21-3)

3.6 Allotropic phase change. Iron is observed to undergo a transformation from bcc to fcc cubic structure at 921°C. Assuming that in each case the atoms behave as hard spheres and that the size of these spheres is not affected by the transformation, determine the percentage change in volume that occurs.

Chapter 3