Chapter 8

Phase Diagrams

A phase in a material is a region that differ in its microstructure and or composition from another region

- homogeneous in crystal structure and atomic arrangement
- have same chemical and physical properties throughout
- have a definite interface and able to be mechanically separated from its surroundings

Chapter 8 in Smith \& Hashemi
Additional resources: Callister, chapter 9 and 10

Phase diagram and "degrees of freedom"

A phase diagrams is a type of graph used to show the equilibrium conditions between the thermodynamically-distinct phases; or to show what phases are present in the material system at various T, p, and compositions

- "equilibrium" is important: phase diagrams are determined by using slow cooling conditions \Rightarrow no information about kinetics

Degree of freedom (or variance) F is the number of variables (T, p, and composition) that can be changed independently without changing the phases of the system

8.1 Phase Diagram of Water

3 phases: solid, liquid, vapour

Triple point:
4.579 Torr
($\sim 603 \mathrm{~Pa}$),
$0.0098^{\circ} \mathrm{C}$

- Field - 1 phase
- Line - phase coexistence, 2 phases
- Triple point - 3 phases

8.2 Gibbs Phase Rule

Gibbs' phase rule describes the possible \# of degrees of freedom (F) in a closed system at equilibrium, in terms of the number of separate phases (P) and the number of chemical components (C) in the system (derived from thermodynamic principles by Josiah W. Gibbs in the 1870s)

$$
F+P=C+2
$$

F is \# of degrees of freedom or variance
P is \# of phases
C is \# of components
Component is the minimum \# of species necessary to define the composition of the system
$\underline{H}_{2} \underline{O} \quad \mathrm{C}=1$
(i) $\mathrm{P}=1, \mathrm{~F}=2$;
(ii) $\mathrm{P}=2, \mathrm{~F}=1$;
(iii) $P=3, F=0$

Chapter 8

8.3 How to construct phase diagrams? Cooling curves

Cooling curves:

- used to determine phase transition temperature
- record T of material vs time, as it cools from its molten state through solidification and finally to RT (at a constant pressure!!!)

BC: plateaue or region of thermal arrest; in this region material is in the form of solid and liquid phases

CD: solidification is completed, T drops

Cooling curve for pure iron @ 1atm

As $T \Downarrow$: melted iron (liquid) $\Rightarrow b c c \mathrm{Fe}, \delta($ solid $) \Rightarrow f c c \mathrm{Fe}, \gamma$ (solid) $\Rightarrow b c c \mathrm{Fe}, \alpha$ (RT)

8.4 Binary systems ($\mathrm{C}=2$)

$$
F+P=C+2=4 \Rightarrow F=4-P
$$

Degrees of freedom (F):
p, T, composition

At $\mathrm{p}=$ const (or $T=$ const)

1. Two components are completely mixable in liquid and solid phase (form a solid state solution), and don't react chemically
2. Two components (A and B) can form stable compounds or alloys (for example: $\left.A, A_{2} B, A_{3} B, B\right)$

Binary Isomorphous Alloy System (C=2)

Isomorphous: Two elements are completely soluble in each other in solid and liquid state; substitutional solid state solution can be formed; single type of crystal str. exist
Reminder: Hume-Rothery rules: (1) atoms have similar radii; (2) both pure materials have same crystal structure; (3) similar electronegativity (otherwise may form a compound instead);
(4) solute should have higher valence

Example: Cu-Ni phase diagram (only for slow cooling conditions)

Liquidus line: the line connecting Ts at which liquid starts to solidify under equilibrium conditions
Solidus: the temperature at which the last of the liquid phase solidifies

Between liquidus and solidus: $\mathrm{P}=2$

53 wt\% Ni - 47 wt\% Cu at $1300^{\circ} \mathrm{C}$

- contains both liquid and solid phases \Rightarrow neither of these phases can have average composition $53 \mathrm{wt} \% \mathrm{Ni}-47 \mathrm{wt} \% \mathrm{Cu}$
- draw a tie line at $1300^{\circ} \mathrm{C} \Rightarrow$ from the graph: composition of liquid phase $\mathrm{w}_{\mathrm{L}}=$ 45% and solid phase $w_{s}=58 \%$ at $1300^{\circ} \mathrm{C}$

8.5 The Lever Rule

The weight percentages of the phases in any 2 phase region can be calculated by using the lever rule

Consider the binary equilibrium phase diagram of elements A and B that are completely soluble in each other

Let x be the alloy composition of interest, its mass fraction of B (in A) is C_{o}
Let T be the temperature of interest \Rightarrow at T alloy x consists of a mixture of liquid (with C_{L} - mass fraction of B in liquid) and solid (Cnapter ${ }_{8}$ mass fraction of B in solid phase)

Lever Rule (cont.)

Q.: A Cu-Ni alloy contains $47 \mathrm{wt} \% \mathrm{Cu}$ and 53% of Ni and is at $1300^{\circ} \mathrm{C}$. Use Fig.8.5 and answer the following:
A. What is the weight percent of Cu in the liquid and solid phases at this temperature?
B. What weight percent of this alloy is liquid and what weight percent is solid?

8.6 Nonequilibrium Solidification of Alloys

\Leftarrow constructed by using very slow cooling conditions

Atomic diffusion is slow in solid state; as-cast microstructures show "core structures" caused by regions of different chemical composition

Chapter 8

Nonequilibrium Solidus

- each core structure will have composition gradient $\alpha_{1}-\alpha_{7}$
- additional homogenization step is often required (annealing $<\mathrm{T}_{7}$)

8.7 Binary Eutectic Alloy System

- Components has limited solid solubility in each other
- Example: cooling $60 \% \mathrm{~Pb}-40 \% \mathrm{Sn}$ system

Liquid $\xrightarrow{\text { eutectic_T }}$ a solid solution $+b$ solid solution
This eutectic reaction is called an invariant reaction \Rightarrow occurs under equilibrium conditions at specific T and alloy composition

$$
\mathrm{F}=0
$$

Solubility Limit: Water-Sugar

- Changing T can change \# of phases: path A to B.
- Changing C_{0} can change \# of phases: path B to D

Binary Eutectic Alloy System

Eutectic α
Figure 8.13, Smith
Chapter 8

Q: A lead-tin ($\mathrm{Pb}-\mathrm{Sn}$) alloy contains $64 \mathrm{wt} \%$ proeutectic (α) and 36% eutectic $\alpha+\beta$ at $183^{\circ} \mathrm{C}-\Delta \mathrm{T}$. Using Figure 8.13, calculate the average composition of this alloy.

8.8 Binary Peritectic Alloy System

The melting points of the two components are quite different
A liquid phase reacts with the solid phase to form a new and different solid phase

$$
\text { Liquid }+\alpha \rightarrow \beta
$$

Binary Peritectic Alloy System (cont.)

Chapter 8

8.9 Binary monotectic systems

Monotectic reaction: a liquid phase transforms into a solid phase and another liquid phase

8.10 Invariant Reactions

To summarize:
5 invariant reactions ($F=0$)

1. Eutectic
2. Eutectoid
3. Peritectic
4. Peritectoid
5. Monotectic

Liquid	$\rightarrow \alpha+\beta$
α	$\rightarrow \beta+\gamma$
Liquid $+\alpha$	$\rightarrow \beta$
$\alpha+\beta$	$\rightarrow \gamma$
L_{1}	$\rightarrow \alpha+\mathrm{L}_{2}$

The eutectic and eutectoid reactions are similar in that they both involve the decomposition of a single phase into two solid phases. The -oid suffix indicates that a solid, rather than liquid, phase is decomposing.

8.11 Phase Diagrams with Intermediate Phases and Compounds

Terminal phase: a solid solution of one component in another for which one boundary of the phase field is a pure component

Intermediate phase: a phase whose composition range is between those of terminal phases

Ti-Si-O system

- Experiment $\left(700-1000^{\circ} \mathrm{C}\right)$

$$
\mathrm{Ti}+\mathrm{SiO}_{2} \rightarrow \mathrm{Ti}_{5} \mathrm{Si}_{3} \text { and } \mathrm{TiO}_{y}
$$

- At equilibrium the system will be in $\mathrm{TiSi}_{\mathrm{x}}-\mathrm{TiO}_{\mathrm{y}}-\mathrm{SiO}_{2}$ three phase region (from calculations)
- $\mathrm{Ti}_{5} \mathrm{Si}_{3}-\mathrm{TiO}-\mathrm{SiO}_{2}$ three phase region determined experimentally and remaining tie lines can be inferred

8.12 Ternary Phase Diagram

$$
\text { F + P = C + } 2
$$

For $p=1$ atm, $\mathrm{T}=$ const (isoterms)

Cr-Fe-Ni alloy
stainless steel

Three and four component system

$$
\begin{aligned}
& A B+A C=2 A+B C \\
& \Delta G=\left(2 G_{A}+G_{B C}\right)-\left(G_{A B}+G_{A C}\right)
\end{aligned}
$$

If $\Delta G<0$, there is tie line between A and $B C$ The remaining tie lines cannot cross

$$
\begin{gathered}
A B+A C+A D=3 A+B C D \\
\Delta G=\left(3 G_{A}+G_{B C d}\right)-\left(G_{A B}+G_{A C}+G_{A D}\right)
\end{gathered}
$$

- Two phase equilibrium is represented by a tie line
- If $\Delta \mathrm{G}<0$, there is a tie line between A and BCD;
- otherwise plane connects AB-AC-AD

The Ti-Si-N-O quaternary phase diagram

- Entire phase diagram can be calculated by taking into account all possible combinations of reactions and products
- 4 ternary diagrams of Ti-Si-N, Ti-N-O, Ti-Si-O and $\mathrm{Si}-\mathrm{N}-\mathrm{O}$ were evaluated
- additional quaternary tie lines from TiN to SiO_{2} and $\mathrm{Si}_{2} \mathrm{~N}_{2} \mathrm{O}$
- stable metallization bilayer of TiN and TiSi_{2} in contact with SiO_{2}

A.S.Bhansali, et al., J.Appl.Phys. 68(3) (1990) 1043
Z.Chen, et al., Phys.Stat.Sol.B 241(10) (2004) 2253

