Chapter 9. Alloys

Alloy:

- · homogeneous combination of 2 or more elements
- at least one of which is a metal
- · has metallic properties

Based on Fe	Based on other metals (Al, Cu, Mg, Ti, Ni)
ferrous	nonferrous

· Need to improve some properties of the base metal

Density, reactivity, electrical and thermal conductivity is often the same as a constituent metal

Mechanical properties (strength, Young's modulus, etc.) can be very different

• Comparative cost of the element components

Steel: \$0.27 /lb Cu: \$0.76 / lb Al: \$0.67 /lb Zn: 0.45 /lb (2001) \$0.36 /lb \$3.62 / lb \$1.14 /lb 1.34 /lb (2007)

Chapter 9 in Smith & Hashemi Chapter 9

1

9.1 Iron and Steel

First step: Fe extraction in **blast** furnaces (reduction reaction at ~400°C):

- main iron ore: Fe₂O₃
- resulting raw iron is molten: Fe (\sim 4% C) \Rightarrow steel-making furnace

Steel: alloy of Fe and C (up to 1.2%)

 \Rightarrow oxidize impurity (S, P, etc) and C in the raw iron until the carbon content is

below the required level

 $Fe_2O_3 + 3 C = 2 Fe + 3 CO$

FeO + C = Fe + CO

Interstitial voids in the $bcc \alpha$ Fe lattice

Consider bcc α Fe lattice, the atomic radius of the Fe is 0.124nm, and the largest interstitials are at the ($^{1}/_{2}$, 0, 0), (0, $^{1}/_{2}$, 0), (0, 0, $^{1}/_{2}$), ($^{1}/_{2}$, 0), etc. positions

Calculate the radius of the largest interstitial voids.

Chapter 9

ļ

Interstitial voids in the $fcc \gamma$ Fe lattice

Consider fcc γ Fe lattice, the atomic radius of the iron in 0.124nm, and the largest interstitials occur at the ($^{1}/_{2}$, 0, 0), (0, $^{1}/_{2}$, 0), (0, 0, $^{1}/_{2}$), *etc.* type positions Calculate the radius of the largest interstitial voids.

Chapter 9

Invariant reactions in the Fe-Fe₃C diagram

Eutectic composition – a specific alloy composition that freezes at a **lower** than all other composition

Eutectic temperature – the **lowest** temperature at which the L phase can exist when cool down slowly

Chapter 9

6

9.4 Classification of plain-carbon steels

Designated by a four-digit AISI-SAE* code: 10XX

"10": plain - carbon steel

"XX": the nominal carbon content of the steel in hundredths of a percent (0.3% C - 1030)

Alloy AISI-SAE number	Chemical composition (wt %)	Condition	Tensile strength		Yield strength		Elongation
			ksi	MPa	ksi	MPa	(%)
1010	0.10 C, 0.40 Mn	Hot-rolled Cold-rolled	40-60 42-58	276-414 290-400	26-45 23-38	179-310 159-262	28–47 30–45
1020	0.20 C, 0.45 Mn	As rolled Annealed	65 57	448 393	48 43	331 297	36 36
1040	0.40 C, 0.45 Mn	As rolled Annealed Tempered*	90 75 116	621 517 800	60 51 86	414 352 593	25 30 20
1060	0.60 C, 0.65 Mn	As rolled Annealed Tempered*	118 91 160	814 628 110	70 54 113	483 483 780	17 22 13
1080	0.80 C, 0.80 Mn	As rolled Annealed Tempered*	140 89 189	967 614 1304	85 54 142	586 373 980	12 25 12

- Mn enhances strength (0.3-0.95%)
- · Low C content plain-carbon steels have low strength, but high ductility
- Low corrosion and oxidation resistance ⇒ alloying for another metals

* American Iron and Steel Industry – Society for Automotive Engineers

Classification of Alloy Steels

May contain up to 50% of alloying elements

Designated by 4 digit number "ABXX"

"AB": principal alloying elements (or group of elements)

"XX": the nominal carbon content of the steel in hundredths of a percent

5040 - Chromium (0.4%), C (0.4%); other examples in Table 9.4

Depending on the tendency to form the compound (oxide, sulfide, etc.) or carbide, alloy elements distribute themselves differently in steel (Table 9.5)

Cu – dissolves in ferrite (Fe)

Ni - dissolves in Fe, forms Ni₃Al (if Al is another alloying element)

Cr, Mo, W – dissolve in small amounts, compete with Fe to form M_xC

Si-dissolves in Fe, forms nonmetallic silicate (SiO_2)(M_xO_v) inclusions

Chapter 9 13

Effect of Alloying Elements on the Eutectoid Temperature

The effect of the percentage of alloying elements on the eutectoid temperature

Chapter 9

Ti, Mo and W – increase the T (ferrite-stabilizing elements)

Mn and Ni – lower the T (austenite-stabilizing elements)

9.7 Stainless Steels

Stainless steel: Fe, Cr, Ni

High corrosion resistance - due to high Cr content (min 12% Cr)

Classical mechanism:

- low permeability to oxygen (low diffusion coefficients for metal ions and O)
- high plasticity to prevent fracture
- high melting T and low vapour p

S. steel is exposed to oxidizing agents to form a protective oxide layer

Ferritic s.s.: Fe-Cr alloys

Martensitic s.s.: Fe - Cr (12-17% Cr)

– C (0.5-1%)

Austenitic s.s.: Fe - Cr - Ni

Fe retains fcc structure due to Ni (fcc) at RT

Sword construction

Unique hard, highly razor sharp cutting edge

Inner core is resilient and is able to absorb shocks

Different steel types:

- (1) softer inner core lower C content
- (2) harder outer shell

Long forging process, folding inner core into outer harder shell

Is stainless steel good enough for swords?

If use the same:

- stays sharp for a long time, but will break as soon as you stress it
- very soft and tough, but dulls very easily
- most pronounced effect for the longer blades

Cr (smaller amounts): improves hardening and helps to refine the grain size

Cr (larger amounts): the grain boundaries are weakened ⇒ affects the overall performance

- 440C (martensitic s.s)
- either toughness or edge-holding capabilities are compromised
- thicker to improve strength ⇒ weight and balance problems
- durability

Chapter 9

18

9.5 Aluminum Alloys

Parent metal Al:

- + low density (2.7 g/cm³) ⇒ transportation
- + excellent corrosion resistance (surface passivation by Al₂O₃ layer)
- + nontoxic ⇒ food containers and packaging
- + high electrical conduction (Ag > Cu > Au > Al > ...)
- + most abundant metallic element
- + relatively low price
- low strength ⇒ but it can be alloyed!!!

$$\begin{split} \text{Aluminum ores: } (\text{Al}_2\text{O}_3)_x(\text{H}_2\text{O})_y; \ (\text{Al}_2\text{O}_3)_m(\text{SiO}_2)_n; \ (\text{Al}_2\text{O}_3)_x(\text{Fe}_2\text{O}_3)_y(\text{H}_2\text{O})_z \\ \text{Al}_2\text{O}_3 + \text{H}_2\text{O} + \text{NaOH} \Rightarrow \text{Na [Al(OH)}_4] \Rightarrow \text{Al(OH)}_3 \downarrow \Rightarrow \text{Al}_2\text{O}_3 \end{split}$$

Electrolysis (C cathode and anode, extremely high energy consumption)

Chapter 9 19

Precipitation Strengthening (Hardening)

Using temperature cycling create a material (alloy) with a dense and fine dispersion of precipitated particles in a matrix of *deformable* metal (e.g. Al)

There must be a terminal solid solution with decreased solid state solubility as the $\mathsf{T} \!\! \downarrow$

- Solution heat treatment (to T between solvus and solidus, T₁)
- Quenching (typically to RT, T₃): formation of supersaturated solid state solution
- Aging: formation of finely dispersed precipitates
- natural aging (at RT)
- artificial aging (at $\sim 0.15-0.25$ (T₁-T₃))

Chapter 9

Aging Process

Supersaturated solid solution: not a stable energy configuration

Formation of equilibrium or metastable phases lowers the energy of the system

- 1. Initially only few clusters of segregated atoms (precipitate zones) are formed
- 2. Optimum size and distribution of precipitates is necessary for the best strength properties

9.6 Copper Alloys

Parent metal Cu:

- + good corrosion resistance (positive electrochemical potential, low chemical reactivity)
- + high electrical conduction (Ag > Cu >...) and high thermal conductivity
- medium tensile strength \Rightarrow can be alloyed
- high price...

```
Copper ores: CuS, (Cu, Fe)S, Cu metal  2\text{Cu}_2\text{S} + 3\text{O}_2 \rightarrow 2\text{Cu}_2\text{O} + 2\text{SO}_2 \\ 2\text{Cu}_2\text{O} + \text{Cu}_2\text{S} \rightarrow 6\text{Cu} + \text{SO}_2 \\ \text{tough-pitch copper (>98\% Cu)}  Further purification \Rightarrow electrolytic tough-pitch copper (>99.95% Cu, O 0.04%) Even high purity - some issues... O forms Cu<sub>2</sub>O, when Cu is cast  \text{Cu}_2\text{O} + \text{H}_2 \text{ (dissolved in Cu)} \Rightarrow 2\text{Cu} + \text{H}_2\text{O (steam)} \\ \text{5 Cu}_2\text{O} + 2\text{ P} \Rightarrow 10\text{ Cu} + \text{P}_2\text{O}_5 \\ \text{casting under reduced atmosphere} \Rightarrow \textit{oxygen-free high-conductivity (OFHC) Cu}
```

Copper Alloys

Chapter 9

```
Cu – Zn alloys, brasses (phase diagram, Figure 8.27)
```

Substitutional s. s. solution of Zn (<35%) in Cu (fcc) – α phase

High Zn content – ordered bcc β phase

Strength: Cu 220Pa; 70Cu_30Zn - 325MPa;

s. steel 550MPa

Cu - Sn bronzes or Phosphorous bronzes

1-10% Sn (solid solution strengthen)

Stronger compared to brass, better corrosion resistance

Cu - Be alloys: 0.6-2% Be, 0.2-2.5% Co

Strength is high as 1463MPa ⇒ tools, requiring high hardness

- high cost

Table 9.11: typical mechanical properties and applications

9.9 Mg alloys

Parent metal Mg (hcp):

- + very light (1.74 g/cm³) ⇒ aerospace applications
- difficult to cast (2Mg + O_2 = 2MgO), cover fluxes must be used
- low melting temperature
- high cost
- poor resistance to creep, fatigue, and wear
- low strength

Major alloying elements: Al, Zn, Mn, rare earth elements

Precipitation hardening (alloys with AI): Mg₁₇AI₁₂ precipitates, age-hardening

Th, Zr (form precipitates in Mg): high T strengths

Mg₉Ce: a rigid grain boundary network

difficult to cold-work Mg alloys as they have an hcp crystal structure (restricted slip systems)

Metallic Ti

Parent metal Ti:

- + relatively light (4.7 g/cm³) ⇒ aerospace
- + superior corrosion resistance (O, CI)
- + high strength (99.9% Ti 662MPa)
- relatively high price (difficult to extract in the pure state from its compounds, reactions with O, N, C, Fe)

883°C ⇒ bcc
RT, hcp

α phase

Ti ores: TiFeO₃ (ilmenite), TiO₂

Kroll method:

 $2\text{TiFeO}_3 + 7\text{Cl}_2 + 6\text{C} (900^{\circ}\text{C}) \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{CO}$

FeCl₃ and TiCl₄ separated by fractional distillation

 $TiCl_4 + 2Mg (1100°C) \rightarrow 2MgCl_2 + Ti$

Ti separation by HCl/H₂O mixture ⇒Ti sponge

Ti Alloys Al and O are α phase stabilizing elements for Ti •Ti-6Al-4V: important Ti alloy, combines high strength with workability; reduced density, ductility RT, hcp α phase V and Mo are β phase stabilizing elements for Ti Applications: • chemical and marine applications, • aircraft airframe and engine parts, • weldable forgings and sheet metal parts Chapter 9 Chapter 9

Ni Alloys

Parent metal Ni:

- + high density (8.9 g/cm³)
- + exceptional corrosion resistance
- + no oxidation at high temperature
- high price

- CrC_x
- Monel alloy: 66 Ni 32 Cu (552MPa)
- Monel K500: 66 Ni 30Cu 2.7 Al- 0.6 Ti (1035 MPa)
 (Precipitation strengthening Ni₃Al, Ni₃Ti)
- Ni-base "superalloys": 50 Ni 20 Cr 20 Co 4Al 4 Ti (Ni $_3$ Al, Ni $_3$ Ti) C exceptional in their ability to withstand high T and high oxidation conditions without experiencing significant creep

9.11 Shape-Memory Alloys: metal alloys that recover a previously defined shape when subjected to an appropriate heat treatment process • super elasticity: twinned martensite phase is easy to deform by stress (propagation of the twin boundary) • shape-memory effects Austenite Austenite Twinned Martensite, RT Temperature Chapter 9 100%

Applications of SMA

Ex.: Ni (49%)-Ti (51%) (nitinol), Au-Cd, Cu-Zn-Al-Ni

- good mechanical properties: strong
- · corrosion resistant
- · bio-compatible
- 1. Aircraft Maneuverability
- 2. Surgical tools
- 3. Robotic Muscles

Thermodynamic and kinetic factors

Some alloy compositions may exhibit particular high **glass-forming ability**

BMG are more likely to have :

- 3-5 components
- · with large atomic mismatch
- · composition close to eutectic
- · be densely packed

BMG-forming composition region in the Mg-(Cu,Ag)-Y system. Within the blue region, the critical diameter of the glasses exceeds 8 mm

- low enthalpy and entropy ⇒ low thermodynamic driving force for crystallization
- · low atomic mobility associated with viscosity
- · viscosity is high and relatively weak T dependent

Chapter 9

35

Structure of glassy metals

Short-range order (SRO) develops over the first couple of coordination shells (<0.5 nm)

Medium - range order (MRO) may extend to beyond ~ 1nm

How atoms pack in metallic glasses?

From experiments: dense packing is characteristic; microscopic free volume can be unevenly distributed

- Efficiently packed solute-centered quasiequivalent clusters organized with ordered packing over
- 2. Overlapping NN clusters that share the same solvent atoms
- 3. No orientation order between clusters, so that solvent atoms are randomly packed

Chapter 9

Mechanical Behaviour

Heterogeneous Deformation: in the absence of dislocation–mediated crystallographic slip, deformation in BMG occurs in thin shear bands

- local heating and nanocrystal growth during shear deformation

Mechanical Strength: record yield strength Co-Fe-Ta-B-Mo 5.5GPa

37

Applications of BMG

Magnetic applications

· magnetic shielding sheets

Chemical

- · components in the fuel cells
- diagrams for pressure sensors

Structural Materials

- sport equipment (golf clubs, tennis rackets, etc.)
- precision gears for micromotors

Chapter 9

9.13 Medical and orthopedic applications of metals

Specific replacement of damaged or dysfunctional tissue

Ex: orthopedic applications (all or part of the bone or joint reinforced)

Biometals: metal alloys that

- · Replace damaged biological tissues
- Restore function
- · Constantly or intermittently in contact with body fluids
- 1. Primary characteristic of a biometal is biocompartibility
- chemical stability
- · corrosion resistance
- · noncarcinogenic
- nontoxic (Cu, Co, Ni: toxic)
- S.s. 316L

 Ti, Zr, Pt Co Cr Mo

 Ti and alloys
- 2. Be able to cycle under load in the highly corrosive environment (~10° cycles)

Chapter 9

30

Summary

- Alloy is homogeneous hybrid of 2 or more elements, at least one of which is a metal and has metallic properties
- Fe Fe₃C phase diagram
 - identify phases
 - invariant reactions
 - formation of martensite phase (microstructure and mechanical properties)
 - steel tempering
- Precipitation hardening mechanism
- Superalloys
- · Shape-memory alloys
- · Bulk glassy metals

Chapter 9

Problems

- 9.1 Define the following phases that exist in the Fe-Fe3C phase diagram: (a) austenite, (b) ferrite, (c) cementite, (d) ferrite.
- 9.2 Write the reactions for the three invariant reactions that take place in the Fe-Fe3C phase diagram.
- 9.3 Describe the structural changes that take place when a plain-carbon eutectoid steel is slowly cooled from the austenitic region just above the eutectoid temperature.
- 9.4 A 0.25 percent C hypoeutectoid plain-carbon steel is slowly cooled from 950°C to a temperature just slightly below 723°C. (a) Calculate the weight percent proeutectoid ferrite in the steel.
- (b) Calculate the weight percent eutectoid ferrite and weight percent eutectoid cementite in the steel.
- 9.5 A 1.10 percent C hypereutectoid plain-carbon steel is slowly cooled from 900°C to a temperature just slightly below 723°C. (a) Calculate the weight percent proeutectoid cementite present in the steel; (b) Calculate the weight percent eutectoid cementite and the weight percent eutectoid ferrite present in the steel.
- 9.6 What are the advantages of martempering? What type of microstructure is produced after tempering a martempered steel?
- 9.7 What are the three basic heat-treatment steps to strengthen a precipitation-hardenable alloy?
- 9.8 What type of surface film protects stainless steels?
- 9.9 In what respect are the nickel-base superalloys "super"? What are the three main phases present in nickel-base superalloys?
- 9.10 Describe structural changes in shape memory alloys.