The University of Western Ontario Department of Physics and Astronomy

P2800 Fall 2008

Homework Assignment #1 (September 11, 2008) Due date: September 23, 2008

Problems:

- 1. An alloy consist of 80 weight % Cu and 20 weight % Be. What are the atomic percentages of Cu and Be in the alloy? (1.5 points)
- 2. Calculate the energy in joules and electron volts of the photon whose wavelength is 226.4nm. (1 point)
- 3. Electronic configuration of chlorine is $1s^2 2s^2 p^6 3s^2 p^5$. Using the table of electronegativity (see lecture notes) and assuming that the full electron transfer occurs from less electronegative to more electronegative element:
- (a) determine the oxidation number of chlorine in the compounds in the table;
- (b) write the electron configuration of the chlorine ions using *spdf* notation (1.5 point).

Compound	Cl oxidation number	Cl ion electron configuration
KCl		
HClO		
HClO ₂		
HClO ₃		
HClO ₄		

- 4. Calculate the attractive force between a pair of K+ and Br- ions that are located on equilibrium distance between each other. Assume the ionic radius of the K+ ion to be 0.133nm and that of the Br- ion to be 0.196nm. (1.5 points)
- 5. Predict a predominant (and, if applicable, secondary) bonding type in the compound X-Y, where electronic configuration for X and Y in their neutral states are listed below. Identify the elements and suggest stoichiometry, whenever appropriate (2 points):
- a) $X=Y: [Ar]4s^23d^8;$
- b) X: [Kr]5s²4d²; Y: [He]2s²2p⁴;
- c) $X=Y: [He]2s^22p^2;$
- d) $X=Y: [Ar]4s^23d^{10}4p^6;$
- e) X: [Ne]3s²3p²; Y: [He]2s²2p²;
- f) X: [He]2s²2p³; Y: [He]2s²2p⁴;
- g) X: [Ar]4s²3d⁶; Y: [He]2s²2p⁴;

The University of Western Ontario Department of Physics and Astronomy

h) X: [Ne]3s²; Y: [He]2s²2p⁴; i) X: 1s²; Y: [He]2s²2p⁵; j) X=Y: [He]2s²2p⁵

- 6. Compare the percentage ionic character in the semiconducting compound InSb amd ZnTe. (1.5 points)
- 7. Methane (CH₄) has a much lower boiling temperature than does water (H₂O). Explain why this is true in terms of the bonding **between molecules** in each of these two substances (1 point).