The University of Western Ontario Department of Physics and Astronomy

P2800 Fall 2008

Homework Assignment #3 (October 9, 2008) Due date October 28, 2008

Problems:

- 1. X-rays pf an unknown wavelength are diffracted by a gold sample. The 2Θ angle was 64.582° for the $\{220\}$ planes. What is the wavelength of the X-rays used? (The lattice constant of gold =0.40788 nm; assume first-order diffraction, n=1).
- 2. A sample of bw metal with the lattice parameter a = 0.33nm was placed in a X-ray diffraction to using incoming x-rays with $\lambda = 0.1541$ nm. Using Braggs law (assume first order diffraction, n=1) predict positions of the diffraction peaks (in 2 Θ) corresponding to {110}, {210}, {230}, {321} and {431} planes. Which of these peaks will be observable?
- 3. Name and briefly describe three different AFM operation modes. In which mode separation between the probe and the surface is the highest?
- 4. The distance between atoms in a crystal are in a \sim 1-2 Å range, so waves with approximately this wavelength are required to explore the crystal structure. Using de Broglie law ($\lambda = h/p$), calculate the energies of (a) neutrons (m=1.675×10-24kg), (b) electrons (m=0.911×10-28kg) and (c) X-rays required for the structural studies?
- 5. The diffusivity of Mn atoms in the fx iron lattice is $1.5 \times 10^{-14} \text{m}^2/\text{s}$ at 1300°C and $1.50 \times 10^{-15} \text{m}^2/\text{s}$ at 400°C . Calculate the activation energy in kJ/mol for this case in this temperature range. (R=8.314 J/(mol K).

The University of Western Ontario Department of Physics and Astronomy

6. Classify the mechanism of diffusion in first 11 solute/solvent pairs given in the Table below (interstitial or substitutional). Compare the diffusivity values and draw a conclusion.

Table 5.2 Diffusivities at 500°C and 1000°C for selected solute-solvent diffusion systems

		Diffusivity (m ² /s)	
Solute	Solvent (host structure)	500°C (930°F)	1000°C (1830°F)
1. Carbon	FCC iron	(5×10^{-15}) * 10^{-12}	3×10^{-11}
Carbon	BCC iron	10^{-12}	(2×10^{-9})
3. Iron	FCC iron	(2×10^{-23})	2×10^{-16}
4. Iron	BCC iron	10^{-20}	(3×10^{-14})
Nickel	FCC iron	10^{-23}	2×10^{-16}
Manganese	FCC iron	(3×10^{-24})	10^{-16}
7. Zinc	Copper	4×10^{-18}	5×10^{-13}
8. Copper	Aluminum	4×10^{-14}	$10^{-10} \mathrm{M}^{\dagger}$
9. Copper	Copper	10^{-18}	2×10^{-13}
10. Silver	Silver (crystal)	10^{-17}	$10^{-12} \mathrm{M}$
11. Silver	Silver (grain boundary)	10^{-11}	
12. Carbon	HCP titanium	3×10^{-16}	(2×10^{-11})

- 7. A stress of 2.34 MPa is applied in the [001] direction of a unit cell of the *fw* copper single crystal. Calculate the resolved shear stress on the (-111) plane in the following directions: (a) [101], (b) [110], (c) [111] and (d) [0-11]
- 8. Calculate the engineering stress on a 0.8 cm diameter rod that is subjected to a force of 1500 kg?
- 9. What is the difference between the slip and twining mechanisms of plastic deformation of metals?
- 10. By what mechanism do grain boundaries strengthen metals?