P9812a

s Lecture 1
N

1.1 Crystal Lattices
1.2 The Reciprocal Lattice
1.3 Experimental Determination of Crystal Structure

Crystal.

a solid composed of atoms, ions, or molecules arranged in a pattern that is
repeated in three dimensions

A material in which atoms are situated in a repeating or periodic array over large
atomic distances

References:

1. Marder, Chapters 1-3

2. Kittel, Chapter 1 and 2

3. Ashcroft and Mermin, Chapter 4-6

4. Burns, Chapters 1-2

5. Ziman, Chapter 1 Lecture 1 1

« Crystalline materials
- atoms (ions or molecules) in repeating 3D pattern (a lattice)
- long-range order; ex.: NaCl,

« Amorphous (noncrystalline) materials
- Short range order, not periodic; ex.: liquid water, glass

* Fractals
- long-range order, symmetry, but not repeating

« Liquid crystals
- long range order of one type; disorder of another
- nematic and smectic

Lecture 1 2
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1.1 Crystal Lattices

Atomic Structure Questions:
What is the basic structure of matter?
How do atoms spontaneously organize?

Basic Answers:

Atoms form crystalline arrays

g

1.1.1 Two-Dimensional Lattices

Definitions :

Bravais lattice

Primitive vector

Basis vector

Unit cell (primitive or not)
Wigner-Seitz cell (Voronoi polyhedron)
Translation, space and point groups

Lecture 1
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Scaling theory relates atom-scale units to macroscopic solids

« ldea comes from special class of solids: minerals
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Bravais Lattices
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Hexagonal
Are primitive vectors unique? @ ‘/:._. ¢ . * . ¢ . ‘ . * . ‘ .
ai
No L L] - L L]
For hexagonal lattice &, = & o) et '
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L LJ L] L] . . L] .
= 143
We can also choose Qg = a(—E 7)
< 143
A at a(E ?)
Lecture 1 8
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Lattice with Basis

Note presence of glide plane, showing that space group is not the same as the
product of translation and point group

[
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Some, but not all
symmetries of triangular
lattice destroyed
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Symmetries and The Space Group

The complete set of rigid body motions that takes a crystal into itself is called

space group
G=a+R(A,6)

Two subgroups: translation and point groups

Translation: translation through all lattice vectors defined by |’1:lé1 + nzéiz +...
and it leaves the crystal unchanged (invariant)

Point group consists of rotations that leave the crystal invariant

... plus crew axis and glide planes

Lecture 1 10

Summary: Classification of 2D periodic Structures

Unit cell : a convenient repeating unit of a crystal lattice; the axial lengths and
axial angles are the lattice constants of the unit cell
Larger than

Wigner needed

Seitz cell
-6
1
' ! O O E Unit cell is
: i |
é_l_______e_: (:o:, G—--,Q—--O not unique!
1 7’ N
0 p\_,’g__/g\ o
1 / N/
-0 © O
Wigner — Seitz Cell : place the symmetry centre in
the centre of the cell; draw the perpendicular

bisector planes of the translation vectors from the

s%o s 25——o70 chosen centre to the nearest equivalent lattice site
Pig. 3. Wignee-Seite el Lecture 1

Questions

How many distinct Bravais lattices are there?
Five
How many distinct two-dimensional lattices are ther e?

17

http://www2.spsu.edu/math/tile/symm/ident17.htm

Lecture 1 12
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1.1.2 Three-Dimensional Crystals

« Distribution of structures among elements
« A small number of popular crystal structures
* Crystal symmetries:

— 7 crystal systems

— 14 Bravais lattices

— 32 point groups

— 230 space groups

Lecture 1 13

Crystallization of Pure Elements

Itace

Semontucr

From Marder:

Web of Elements:

http://www.webelements.com/ \M
crystal_structure.html

Allotropy
|
Allotropy  — the ability of element to exist in two or more crystalline structures

Fe: bcc = fcc = bee

o . °C Liquid iron
In case of compound it is called polymorphism 1530
1304 | & (delta) iron (BCC)
Carbon allotropic forms: ?  (gammay iron (FCC)
. 912+
« diamond g
« graphite E
g
2
« fullerene or buckyballs £ « alpha) iron (BCC)
« nanotubes or buckysheets B
—273 L
Lecture 1 15
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Allotropy

Many elements adopt multiple crystal structures between 0 K and their melting
temperatures

Plutonium has a rich phase diagram

Transformation Phase Structure (atoms per unit Density (g/cc)
Temp. C cell)

112 @ monoclinic (16) 19.8

185 B8 fc monoclinic (34) 17.8

310 7, fe orthorhombic (8) 17.1

450 5 fee (4) 159

475 8 fc tetragonal (2) 16.0

640 € bee (2) 16.5

Table 1: Source, Atomic Weapons Establishment, Discovery Article :

Popular Lattices
|

>90% of elemental metals crystallize upon solidification into 3 densely packed
crystal structures:

Body-centered cubic Face-centered cubic Hexagonal close-
(bcc) (fcc) packed (hcp)

ex.: Fe, W, Cr ex.: Cu, Ag, Au ex.: Zr, Ti, Zn
Lecture 1 17

Important to know:

« Distance between atoms (d)

-interms of a

« Number of atoms in the unit cell

- each corner atoms shared by 8 cells: 1/8

- each face atom shared by 2 cells: %2
- each edge atom shared by 4 cells: ¥4

« Coordination number

- Number of nearest neighbours (n.n.); for metals all equivalent

« Atomic Packing Factor (APF)
APF = Volume of atoms in unit cell / Volume of unit cell (a%)

Lecture 1 18
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Diamond and Silicon dioxide

C (diamond)
Si, Ge Cristobalite (SiO,)
SiC.N.=4 SiO*
OCN.=2
Lecture 1 19

Sodium Chloride — NaCl (Rocksalt)

m Layer 1
-

Layer 2

Lecture 1 Layer 3 =Layer1 20
E— |

Cesium Chloride - CsCl

|
e

Layer 1

O Layer 2

Cs (0, 0,0)
Cl(1/2, 1/2, 1/12)

Layer 3 =Layer1
Lecture 1 21
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Interstitial Sites in

Lecture 1

fcc Crystal Lattice

Octahedral sites
k)
e ]
God~g | THEE
9 Y
o &

I

Tetrahedral sites
3

(&9

&

E|

(#%1

/ 7

Zinc Blend (ZnS) crystal structure

Layer 1

Q@

)

= (€, ' Layer 5=1

O Layer 4
O Layer3
O Layer 2

O Layer 1

Zn (0,0, 0)

S (x+0.25, y+0.25, 2+0.25)

Layer 4

23

Calcium Fluoride — CaF ,

Layer 5=1
O Layer 4

O Layer3
© O Layer2

O Layer 1

ca(0,0,0)
F (+0.25, +0.25, +0.25)
(-0.25, -0.25,

Layer 4

actt

©

Q 9
Qo 9

Fall 2011
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CaF, - coordination

CO,, CdF,, CeO,, CoSi,, ZI0,

Lecture 1

25

Perovskite — CaTiO 4

ABO,
A: M2?*(Ca, Sr, Ba, La)

B: M#* (Ti, Zr, Mn)

Layer 2: TiO,

~ Layer 1: CaO

Ti — octahedral coordination by O (CN=6)

d(Ti-0)=a/2

Ca — cuboid coordination by O (CN = 12)

O — octahedral by Ti and Ca

Lecture 1

Face-

Simple

Base-
Centered

Body-
Centered

Centered

14 Bravais Lattices and 7 Crystal Systems

Cubic
a=b=c

Tetragonal

a=betc

Orthorhombic

e

=f=y=

Monoclinic

atbtc

° a=y=90°

B0

Lecture 1

Fall 2011

Triclinic Hexagonal Rhombohedral
atbtc a=bete a=b=c
0,8,7£90°  a=p=90° a=B=y#90°

v =120°

27
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Symmetry Elements
|

Symmetry of Lattices
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Schonflies and International Notations

Schonflies

C = Cyclic; allows successive rotation about main axis.

D = Dihedral; contains two-fold axes perpendicular to main axis.

S = Spiegel; unchanged after combination of reflection and rotation.

T = Tetragonal.

O = Octahedral.

A subscript n=1 ...6 denotes the order of a rotational axis, and
subscripts denote the three types of mirror plane on previous slide

International

Associates each group with a list of its symmetry axes.

Notation such as 6m refers to a mirror plane containing a six-fold axis,
while 6/m refers to a mirror plane perpendicular to the six-fold axis

Lecture 1 29

32 Crystallographic Point Groups

Thchme  Monochmie Onbo  Ingoml | lewagoml Hewsgoml Cubwe

D o [

s‘xfi:f A ?;+7 ey 23@3 Learn more here:
http://www.uwgb.edu/dutchs/SYMMETRY/
3dSpaceGrps/3DSPGRP.HTM
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4 @ @6/ ;@, http://www.ccas.ru/galiulin/feddos1.html
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Symmetry Operations
—

+ Symmetry operation for a molecule or crystal is an operation that
interchanges the positions of the various atoms in such a way that the
molecule or crystal appear exactly as before the operation

Find of the symmetry operations:

3 rotations around P-F axis

3 mirror planes Cl, P and different F atoms
Oy

=~ 1 mirror plane with P and F atoms

rotation by 120 ° and 240° around c-axis
identity operation

Note: the axis of highest symmetry of a molecule or
crystal is called the principle axis or c-axis or z-axis

HW task #1: draw a stereogram for PF;Cl, 31
E— ]

Bulk Truncation Structure
|

b.
Ideal flat surface : truncating the bulk structure of a perfect crystal ‘

Miller Indices, revisited

- For plane with intersections at b,, b, b,
11

i i frre
write reciprocals: b, by b,

- If all quotients are rational integers or 0, this is Miller index
eg. b,b,b,=1,1,05 = (112)

b, by, b,=1, 0,0 = (100)

- In general :
Miller index (i, j, k)= odeded , wherecd- commondenomof b, b, b,
b, b, b, !
o (121212)
eg. cd=12 (,j.k) —(351} =(643 01

Angles between the planes

[ijk] = [Imn] x[opd]

Cross products of two vectors in a plane defines
direction perpendicular to plane
[Imn] and [opq] are both vectors in plane (ijk)

[ijk]« [Imn]

Angle between two planes (directions) C0S® B e S ]
i+ keI e en?

2+1+1
e.g., for [111], [211] : c0sO = = 0=1947°
g [111], [211] NeNG

Lecture 1 33

Fall 2011




P9812a

Planes in hexagonal crystals

4 coordinate axes (a,, a,, a;, and c) of the HCP structure (instead of 3)
Miller-Bravais indices - (h ki l) — based on 4 axes coordinate system

a,, a,, and a, are 120° apart: h ki

c axis is 90°: |

3 indices (rarely used):
h+k=-1
(hkil)=(hkl

Note: in hep, (001) #(100)

Lecture 1 34

Basal and Prizm Planes
I
Basal planes; Prizm planes: ABCD
a, =w a,=0a;=mCc=1 a,=+l;a,= 0 a;=-1;c=o
=(0001) =(10-10)
(0001) _ (1010)
|
_____ S G
a3 s (0110
i 1
@ | —ay
7 i P
< -7 1 e
7 i [ Intercept
1 L is +1
—a ~ a N H @
o B 4 Inui:Cipll A \D < ::tirlccpl
—ayn s 2y
- @ Intercept a3
is +1
(a) (b)
Lecture 1 35
S— |

Comparison of crystal structures
|

FCC and HCP metal crystal structures

(i
plane
(0001) plane

(@) 0]

« (111) planes of fcc have the same arrangement as (0001) plane of hcp crystal
« 3D structures are not identical: stacking has to be considered

Lecture 1 36
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FCC and HCP crystal structures

id a

B A

C
fcc hep
B plane placed in a voids of plane A B plane placed in a voids of plane A
Next plane placed in a voids of Next plane placed in a voids of plane B,
plane B, making a new C plane making a new A plane
Stacking: ABCABC... Stacking: ABAB...

Lecture 1 37

|-Project
normals
onto
planar

-| surface

Stereographic Projections

Normals to
planes

Stereogram for PF ,Cl,

Lecture 1 39

Fall 2011
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1.2 Reciprocal Space
—

Reciprocal space is also called Fourier space, k- space, or momentum space
in contrast to real space or direct space

The reciprocal space lattice is a set of imaginary points constructed in such a
way that the direction of a vector from one point to another coincides with
the direction of a normal to the real space planes and the separation of
those points (absolute value of the vector) is equal to the reciprocal of the
real interplanar distance

= The things which are larger in real space are smaller in reciprocal space by
definition

Lecture 1 40

1.2 Reciprocal Space Lattices

- Given a unit cell with basis vectors (&,,&,)

- There is a complementary reciprocal lattice (&,*, &,*)
435=0, (,j=12)=4*04 and 5,°04

Rectangular Lattice

- Area of unit cell A o ° . . .
3 * . . .
Ja ¥|ao A-lallEIsna . e e e
3, &* A =|a,*|a,* |sina*

Non-rectangular lattice
L] L]

1 ] . . .
A==
A o .real spgce
L] L) L]
“L,
a,*

. .
/o Teciprocal space o o o o o
. . reciprocal space
)

o :7:&

o
° ® real®pace ® a1

1.3 Experimental Determination of Crystal Structure s
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History

Experiments and theory in 1912 finally revealed locations of atoms in crystalline
solids

Essential ingredients:

« Theory of diffraction grating

« Skiing, and physics table at Café Lutz

« X-ray tubes, photographic plates, and first experiments with their use

« Persistence

« Coherent experiments with incoherent theory along behind

Incident particles to consider:

X-rays X-rays  Neutrons Electrons
Neutrons Charge U U i
Electrons ” Mass 0 167107 kg 9.11-10* kg
! Typical energy 10keV 003 eV 100 keV'
Atoms ? Typical wavelength 1A 14 0,054
Typical attenuation length 100 um 5 em 1 pm
Typical atomic form factor, f 102 A 10~* A 104
Term
[

« Miller indices
« Reciprocal lattice

Structure Determination
+ Bragg scattering, elastic and inelastic
+ Bragg angle, Bragg peak and crystal planes

« Atomic form factor
« Structure factor
« Extinctions

Experimental Methods:
« Ewald construction
+ Laue method
« Debye-Scherrer method, powder diffraction
Lecture 1 44

Theory of Scattering from Crystals
|

Geometry of scattering experiment Elastic scattering: frequency of
outgoing radiation is the same as
that of incoming

Radiation of wave vector K, arrives
at a sample, introducing a circular
ring of radiation from each atom

If k, is chosen just right, the scatter-
ing radiation from the atoms adds
constructively in certain directions

Fall 2011

X-ray — EM
n,e-QM
Lecture 1 45
S— |
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—
At the origin
Schiff, page 115 or Jackson Eq. 9.8

Y= Aee + m)eTr]

| o b0 _ [f () f is atomic form factor
aom =40
atom

Scattering from a particle

Contains details of interactions between the
scattering potential and the scattered wave

Let's assume we know f (r)
At R
@~ A" AR[ENR 4 £ (1)

IF-

Forsufficiently larger,

R(r-R-kr-k TR

koo
Y- A 1 ()]

r

UsingEq. aboveanddefining k = ko% and =k, -k

Lecture 1

q=2k,siné

hg - momentum transfer
between incoming and
outgoing waves

0 - Bragg angle ”

Coherent scattering pattern reveals
crystalline pattern

Scattering Theory

and (3.39), Marder.

lllustration of Bragg scattering at angle 6 = 26.56°from the (21) planes of a
square lattice. The magnitudes of k, k, and K are determined using Egs. (3.38)

Lecture 1 47
E— ]
Many scattering particles
—
Assuming multiple scattering and inelastic scattering can be ignored
o gkor +itR
@~ A+ () ]
1 r
In directionawayfromincidentbeam
" ol iR
i
@~ AU () ]
1
Intensityperunit solidangle
I = z f, f, gIRR)
(IR
Equation above is true no matter how atoms are arranged!
Lecture 1 48
E— ]

Fall 2011
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Scattering from crystal

2

I :lalum

Z iR

|
Lauecondition:find § sothatfor all atomlocationsR,
dh=1

One-Dimensional Sum: lattice points must be of the form la
N-1 "
- aq
I

(follow Marder, p. 48)
. 5 Na
ghaa _q ) sszq
ZQ_ g1’ ‘Zq - Sinzﬂ
2 Lecture 1

If all of the scatters are identical and arranged i n a Bravais lattice:

49

Scattering for one-dimension
I
1000
800
600
=
400
200
Peak when i i
N
aq 27 a a a a
—=lr= q=— ‘Wave number ¢
2 a
Assumingdeltafunctions
N-1 N-1 '
zeuaq = Z Nzird(q_ﬁ) Lecture 1
=0 = L a

50

Scattering in three dimensions

|
Main result: wheng =k, —k = K satisfies
&R =10rK R=27t
thereisastrongpeak
Thescateringsumcanberewritten

e :ZN—(ZII;) (a-K)

above also lie in a lattice — the reciprocal lattice

Lecture 1

Fall 2011

When the vectors R lie in a Bravais lattice, then vectors K satisfying equation

51

17
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Lattice with a Basis
|

R=i+0y
Regrouping of basic sum first carried out by Laue

SR S8 (1y+0y1)

(5) (z)
(5w (s

Structure factor for the unit cell is

=T

R

F= |Zeim1|2.

When F; vanishes, have an extinction: Laue overlooked this possibility, leading to years
of confusion interpreting pattems. 52

Experimental Methods

Ewald construction

Shining generic monochromatic X-ray upon crystal gives

no scattering peaks !!!

Lecture 1 53
S— |
Laue Method
|
Z 10
S s
£ 6
£
£ 4
<
=2
Z
£,
E 0.2 0.4 0.6 0.8 1.0
= Wavelength A (A)
Lecture 1 54
S— |

Fall 2011
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Rotating Crystal Method

Cylindrical Film

Incoming Beam
pampl
\_/

Powder Diffraction

o=sinf X
%,

And the radius r on film of the scattering ring due to the reciprocal lattice vector

Xn
Consider an X-ray of wavelength A hits a set of planes
separated by d under an angle ©

- some of the X-rays go straight through

p e = 4 7
- some are reflected (scattered), but only if specific @ Mpanes <~ -

Kis
r = Dtan@6)
Lecture 1 56
E— |
Powder diffraction
|
Main method for determining crystal structure incident . o reflected

conditions met
Consider a material to be a stack of planes at a
constant separation - o

2dsin®

o Out-of-phase
4 A\

incident
NAAAAT Xrays .

ray1

wave front

Fall 2011

reflected

2"/
In phase LA )
whole number ) o @ 0 lanes
AAAAS- 5
S— |

19
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Bragg's law

The diffraction (the coherent elastic scattering of waves by the crystal lattice) condition

. Bragg's law (X-rays,
nx /1 2d Sin O neutrons, electrons)
where A — wavelength of X-ray beam, d — spacing of reflecting planes, @ angle of
incidence and reflection, n — order of diffraction (for most of the cases we discuss n=1)

The lattice plane spacing d depends on the crystal structure and indices {hkI} of the planes
d a d a

eubic_sr = ,7h oA hexagonal _str

d - set by the crystal A X

N A
A — set by apparatus (constant for a given setup) w
can change O (theta) or often 201! f

Kittel, pp.29 - 30

Lecture 1

Constructive and destructive interference

X-ray waves scatter in phase (constructive interference): A, 2A, 3A, ..., nA (n — whole number)
Out of phase (destructive interference): 1/2A, 3/2A, 5/2A, ...

What about the other planes?

1
- if in phase condition holds for plane 1 and 2, it also holds for the plane 3, 4, etc.
- if plane 1 and 2 are out of phase, the 3 will be in phase will the 1%, ... but the 3
4" will cancel it out
4
Other planes are also important:
1
2 }’\’8})\/4
3 A2
4
5
6
7 Unless constructive interference
8 condition met (n — whole number),
there is very little intensity at a
Lecure1 | given angle 59

Schematic illustration of (100) - (200) annihilation in a fec lattice.

Additional rules

« Consider diffraction from the (100) face of the fcc crystal

If 2d sin © = A (i.e., n=1)
% but there is always another plane at (n=1/2)
. a
= no intensity...
e o o

—e o o o —
e e o

Rules for determining the diffracting {hkl} planes in cubic crystals

Lo S Lattice | Reflection Reflection
present absent
]“ bce (h+k+)=even | (h+k+)=odd
|
a fec (hkl) allodd | (hk,l) notall
or even odd or even

Details of crystal unit cell are important

Different rules for different unit cells
Lecture 1 60

Fall 2011
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Possible peaks for cubic structures
|
4, =—2
N o
dhkl F;Ir;i_:)é Sof sc fecc bece
a {100}
Tectare T 61
S— |

Powder diffraction

* Use polycrystalline sample
— All possible planes are at angle © to beam
— Only ones satisfying Braggs condition provide diffraction
— Need to change angle © to detect all “Bragg peaks”

12,000 A

10,000
8,000

6,000 110
310
4,000 211 - 400
k 321

2,000 l

. 222

220
0 A s s
20 40 60 80 100 120 140 160
Diffraction angle 20

Record of the diffraction angles for a W (tungsten) sample obtained by the use of a diffractometer with
Cu radiation

Intensity of diffracted beam (cps)

Lecture 1 62

Experimental details (powder diffraction)

Use polycrystalline sample
+ Source

+ Collimator (slits)  Charceris

« Sample holder (need rotation)
+ Detector (moves in arc around sample; intensity
vs 20 is recorded)

[ 3 0 T
Wanclengih A (A)
Radiation

detector
Radiation detector (moving
on goniometer circle)
10090 50
120110 70

2 oy
0 A2
Tncident b 0 N
cident beam
Radiation <~
generstor Top view of specimen Radiation
fixed in gonjometer

generator

Fall 2011
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