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1.1 Crystal Lattices 
1.2 The Reciprocal Lattice

1.3 Experimental Determination of Crystal Structure

References:
1. Marder, Chapters 1-3

2. Kittel, Chapter 1 and 2
3. Ashcroft and Mermin, Chapter 4-6
4. Burns, Chapters 1-2

5. Ziman, Chapter 1

Crystal: 
a solid composed of atoms, ions, or molecules arranged in a pattern that is 
repeated in three dimensions
A material in which atoms are situated in a repeating or periodic array over large 
atomic distances
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• Crystalline materials
- atoms (ions or molecules) in repeating 3D pattern (a lattice)
- long-range order; ex.: NaCl, 

• Amorphous (noncrystalline) materials
- Short range order, not periodic; ex.: liquid water,  glass

• Fractals
- long-range order, symmetry, but not repeating

• Liquid crystals
- long range order of one type; disorder of another
- nematic and smectic
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Liquid crystalsFractals
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1.1 Crystal Lattices

Atomic Structure Questions:

• What is the basic structure of matter?

• How do atoms spontaneously organize?

Basic Answers:

• Scaling theory relates atom-scale units to macroscopic solids

• Atoms form crystalline arrays
• Idea comes from special class of solids: minerals

See vast numbers of minerals at http://webmineral.com/
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1.1.1 Two-Dimensional Lattices

Definitions :
• Bravais lattice

• Primitive vector

• Basis vector

• Unit cell (primitive or not)

• Wigner-Seitz cell (Voronoi polyhedron)

• Translation, space and point groups
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Bravais Lattices



P9812a

Fall 2011 3

Lecture 1 7

Bravais Lattices
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Questions

Are primitive vectors unique?

No 
For hexagonal lattice

We can also choose

)
2

3
  

2

1
(

)0  1(

2

1

aa

aa

=

=

r

r

)
2

3
  

2

1
(

)
2

3
  

2

1
(

,2

,1

aa

aa

alt

alt

=

−=

r

r

Lecture 1 9

Lattice with Basis
Note presence of glide plane, showing that space group is not the same as the 

product of translation and point group

Some, but not all 
symmetries of triangular 
lattice destroyed
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Symmetries and The Space Group

The complete set of rigid body motions that takes a crystal into itself is called 
space group

),ˆ( θnRaG +=

Two subgroups: translation and point groups

Translation: translation through all lattice vectors defined by 

and it leaves the crystal unchanged (invariant)

Point group consists of rotations that leave the crystal invariant

… plus crew axis and glide planes

...2211 ++ anan
rr
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Summary: Classification of 2D periodic Structures

Larger than 
needed

Unit cell : a convenient repeating unit of a crystal lattice; the axial lengths and 
axial angles are the lattice constants of the unit cell

Wigner –
Seitz cell

Wigner – Seitz Cell : place the symmetry centre in 
the centre of the cell; draw the perpendicular 
bisector planes of the translation vectors from the 
chosen centre to the nearest equivalent lattice site

Unit cell is Unit cell is 
not unique!not unique!

Lecture 1 12

Questions

How many distinct Bravais lattices are there?

Five

How many distinct two-dimensional lattices are ther e?

17

http://www2.spsu.edu/math/tile/symm/ident17.htm
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1.1.2 Three–Dimensional Crystals

• Distribution of structures among elements

• A small number of popular crystal structures

• Crystal symmetries:

– 7 crystal systems
– 14 Bravais lattices
– 32 point groups
– 230 space groups
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Crystallization of Pure Elements

From Marder:

Web of Elements:

http://www.webelements.com/
crystal_structure.html
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Allotropy

Allotropy – the ability of element to exist in two or more crystalline structures

Fe: bcc ⇒ fcc ⇒ bcc
In case of compound it is called polymorphism

Carbon allotropic forms: ?

• diamond

• graphite 

• fullerene or buckyballs
• nanotubes or buckysheets
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Allotropy

Many elements adopt multiple crystal structures between 0 K and their melting 
temperatures

Plutonium has a rich phase diagram
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Popular Lattices

>90% of elemental metals crystallize upon solidification into 3 densely packed 
crystal structures:

Body-centered cubic 
(bcc)

ex.: Fe, W, Cr

Face-centered cubic 
(fcc)

ex.: Cu, Ag, Au

Hexagonal close-
packed (hcp)

ex.: Zr, Ti, Zn
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Important to know:

• Distance between atoms (d)

- in terms of a

• Number of atoms in the unit cell
- each corner atoms shared by 8 cells: 1/8
- each face atom shared by 2 cells: ½
- each edge atom shared by 4 cells: ¼

• Coordination number

- Number of nearest neighbours (n.n.); for metals all equivalent

• Atomic Packing Factor (APF)

APF = Volume of atoms in unit cell / Volume of unit cell (a3)
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Diamond and Silicon dioxide

C (diamond)

Si, Ge Cristobalite (SiO2)

Si C.N. = 4    SiO4
4-

O C.N. = 2
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Sodium Chloride – NaCl (Rocksalt)

Layer 1

Layer 2

Layer 3  = Layer 1
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Cesium Chloride - CsCl

Cs (0, 0, 0)

Cl (1/2, 1/2, 1/2)

Layer 1

Layer 2

Layer 3  = Layer 1
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Interstitial Sites in fcc Crystal Lattice
Octahedral sites

Tetrahedral sites

Lecture 1 23

Zinc Blend (ZnS) crystal structure

Zn (0, 0, 0)

S (x+0.25, y+0.25, z+0.25)

⇐ Layer 1

⇐ Layer 2

⇐ Layer 3

⇐ Layer 4

Layer 5=1

Layer 1 Layer 2 Layer 3 Layer 4
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Calcium Fluoride – CaF 2

⇐ Layer 1

⇐ Layer 2

⇐ Layer 3

⇐ Layer 4

Layer 5=1

Layer 1 Layer 2 Layer 3 Layer 4

Ca (0, 0, 0)

F (+0.25, +0.25, +0.25)

(-0.25,   -0.25,   -0.25)
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CaF2 - coordination

CO2, CdF2, CeO2, CoSi2, ZrO2
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Perovskite – CaTiO 3

Layer 1: CaO

Layer 2: TiO2

ABO3

A: M2+ (Ca, Sr, Ba, La) B: M4+ (Ti, Zr, Mn)

Ti – octahedral coordination by O (CN=6)
d(Ti-O)= a / 2
Ca – cuboid coordination by O (CN = 12)
O – octahedral by Ti and Ca
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14 Bravais Lattices and 7 Crystal Systems
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Symmetry Elements

Symmetry of Lattices
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Schönflies and International Notations

Schönflies
C = Cyclic; allows successive rotation about main axis.

D = Dihedral; contains two-fold axes perpendicular to main axis.

S = Spiegel; unchanged after combination of reflection and rotation.

T = Tetragonal.

O = Octahedral.
A subscript n=1 …6 denotes the order of a rotational axis, and 

subscripts denote the three types of mirror plane on previous slide

International
Associates each group with a list of its symmetry axes. 
Notation such as 6m refers to a mirror plane containing a six-fold axis, 

while 6/m refers to a mirror plane perpendicular to the six-fold axis
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32 Crystallographic Point Groups

Learn more here:

http://www.uwgb.edu/dutchs/SYMMETRY/
3dSpaceGrps/3DSPGRP.HTM

http://www.ccas.ru/galiulin/feddos1.html
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Symmetry Operations 

• Symmetry operation for a molecule or crystal is an operation that 
interchanges the positions of the various atoms in such a way that the 
molecule or crystal appear exactly as before the operation

Note: the axis of highest symmetry of a molecule or 
crystal is called the principle axis or c-axis or z-axis

3 rotations around P-F axis

3 mirror planes Cl, P and different F atoms

rotation by 120 o and 240 o around c-axis

1 mirror plane with P and F atoms

identity operation

Find of the symmetry operations:

HW task #1: draw a stereogram for PF3Cl2
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Ideal flat surface : truncating the bulk structure of a perfect crystal

Miller Indices, revisited

- For plane with intersections at bx, by bz

write reciprocals:

- If all quotients are rational integers or 0, this is Miller index

e.g., bx, by, bz = 1, 1, 0.5 ⇒ (112)

bx, by, bz = 1, ∞, ∞ ⇒ (100)

- In general

Miller index

e.g., 

x

y

z

by

bx

bz

Bulk Truncation Structure
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Angles between the planes

Cross products of two vectors in a plane defines 
direction perpendicular to plane

[lmn] and [opq] are both vectors in plane (ijk)

][][][ opqlmnijk ×=

Θ

222222

][][
cos

nmlkji

lmnijk

++++
•=ΘAngle between two planes (directions)

o47.19
63

112
cos =Θ⇒

++=Θe.g., for [111], [211] :
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Planes in hexagonal crystals

4 coordinate axes (a1, a2, a3, and c) of the HCP structure (instead of 3)

Miller-Bravais indices  - (h k i l) – based on 4 axes coordinate system

a1, a2, and a3 are 120o apart: h k i

c axis is 90o: l

3 indices (rarely used):

h + k = - I

(h k i l) ⇒ (h k l)

Note: in hcp, (001) ≠(100)
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Basal and Prizm Planes

Basal planes;

a1 = ∞; a2 = ∞; a3 = ∞; c = 1

⇒ (0 0 0 1)

Prizm planes: ABCD

a1 = +1; a2 = ∞; a3 = -1; c = ∞

⇒ (1 0 -1 0)
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Comparison of crystal structures

FCC and HCP metal crystal structures

• (111) planes of fcc have the same arrangement as (0001) plane of hcp crystal

• 3D structures are not identical: stacking has to be considered

A

void a

void b

B Bb
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FCC and HCP crystal structures

A A

fcc

B plane placed in a voids of plane A

Next plane placed in a voids of 
plane B, making a new C plane

Stacking: ABCABC…

B B

hcp

B plane placed in a voids of plane A

Next plane placed in a voids of plane B, 
making a new A plane

Stacking: ABAB…

void b

void a

A
C
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Stereographic Projections

crystal

Normals to 
planes

Project 
normals
onto 
planar 
surface

from K.Kolasinski
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Stereogram for PF 3Cl2

E
C3, C3

2

3 C2’
σσσσh
3 σσσσv
S3, S3

5
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1.2 Reciprocal Space

Reciprocal space is also called Fourier space, k- space, or momentum space 
in contrast to real space or direct space 

The reciprocal space lattice is a set of imaginary points constructed in such a 
way that the direction of a vector from one point to another coincides with 
the direction of a normal to the real space planes and the separation of 
those points (absolute value of the vector) is equal to the reciprocal of the 
real interplanar distance

⇒ The things which are larger in real space are smaller in reciprocal space by 
definition 
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1.2 Reciprocal Space Lattices

- Given a unit cell with basis vectors

- There is a complementary reciprocal lattice
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1.3 Experimental Determination of Crystal Structure s
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History

Experiments and theory in 1912 finally revealed locations of atoms in crystalline 
solids

Essential ingredients:
• Theory of diffraction grating

• Skiing, and physics table at Café Lutz

• X-ray tubes, photographic plates, and first experiments with their use

• Persistence
• Coherent experiments with incoherent theory along behind

Incident particles to consider:

X-rays

Neutrons

Electrons ?

Atoms ?
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Term

• Miller indices
• Reciprocal lattice

Structure Determination
• Bragg scattering, elastic and inelastic
• Bragg angle, Bragg peak and crystal planes

• Atomic form factor

• Structure factor
• Extinctions

Experimental Methods:
• Ewald construction
• Laue method

• Debye-Scherrer method, powder diffraction
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Theory of Scattering from Crystals

Geometry of scattering experiment

Radiation of wave vector      arrives 
at a sample, introducing a circular 
ring of radiation from each atom 

ok
r

If ko is chosen just right, the scatter-
ing radiation from the atoms adds 
constructively in certain directions

X-ray – EM

n, e - QM

Elastic scattering: frequency of 
outgoing radiation is the same as 
that of incoming
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Scattering from a particle

Schiff, page 115 or Jackson Eq. 9.8
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Let’s assume we know f (r)

q = 2 k0 sinθ

- momentum transfer 
between incoming and 
outgoing waves

θ - Bragg angle

q
r

h
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Scattering Theory

Illustration of Bragg scattering at angle θ = 26.56° from the (21) planes of a 
square lattice. The magnitudes of ko, k, and K are determined using Eqs. (3.38) 
and (3.39), Marder.

Coherent scattering pattern reveals

crystalline pattern
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Many scattering particles

Assuming multiple scattering and inelastic scattering can be ignored
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Equation above is true no matter how atoms are arranged!
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Scattering from crystal

If all of the scatters are identical and arranged i n a Bravais lattice:
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Scattering for one-dimension

Peak when 

)
'2

(
2

:functions delta Assuming

2

2

1

'

1

0 a

l
q

L
Ne

a

l
ql

aq

N

l

N

l

ilaq πδπ

ππ

∑∑
−

−∞=

−

=
−=

=⇒=

Lecture 1 51

Scattering in three dimensions

When the vectors R lie in a Bravais lattice, then vectors K satisfying equation 
above also lie in a lattice – the reciprocal lattice
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Lattice with a Basis
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Experimental Methods

Ewald construction

Shining generic monochromatic X-ray upon crystal gives no scattering peaks !!!
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Laue Method
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Rotating Crystal Method
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Powder Diffraction

And the radius r on film of the scattering ring due to the reciprocal lattice vector 
K is









= −

ok

K

2
sin 1θ

)2tan( θDr =
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Powder diffraction

Main method for determining crystal structure

Consider an X-ray of wavelength λ hits a set of planes 
separated by d under an angle Θ

- some of the X-rays go straight through

- some are reflected (scattered), but only if specific 
conditions met

Consider a material to be a stack of planes at a 
constant separation - d

d
ΘΘΘΘ

Θsin2d

In phase

Out-of-phase λ×n

λ×n
whole number
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Bragg’s law

The diffraction (the coherent elastic scattering of waves by the crystal lattice) condition

Θ=× sin2dn λ
where λ – wavelength of X-ray beam, d – spacing of reflecting planes, Θ– angle of 
incidence and reflection, n – order of diffraction (for most of the cases we discuss n=1)

Bragg’s law (X-rays, 
neutrons, electrons)

d – set by the crystal

λ – set by apparatus (constant for a given setup)

can change Θ (theta) or often 2Θ!!!

222_
lkh

a
d strcubic

++
=

( ) 2

22
22

_

3
4

c
al

hkkh

a
d strhexagonal

+++
=

The lattice plane spacing d depends on the crystal structure and indices {hkl} of the planes

Kittel, pp.29 - 30
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Constructive and destructive interference

X-ray waves scatter in phase (constructive interference): λ, 2λ, 3λ, …, nλ (n – whole number)

Out of phase (destructive interference): 1/2λ, 3/2λ, 5/2λ, …

What about the other planes?

- if in phase condition holds for plane 1 and 2, it also holds for the plane 3, 4, etc.

- if plane 1 and 2 are out of phase, the 3rd will be in phase will the 1st, … but the 
4th will cancel it out

Other planes are also important:
1

2

3

4

5

6

7

8

λ/8 λ/4

λ/2

1

2

3

4

Unless constructive interference
condition met (n – whole number), 
there is very little intensity at a 
given angle
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Additional rules

• Consider diffraction from the (100) face of the fcc crystal

If 2d sin Θ = λ (i.e., n=1)

but there is always another plane at (n=1/2)

⇒ no intensity…
a

ΘΘΘΘ

Details of crystal unit cell are important

Different rules for different unit cells

Rules for determining the diffracting {hkl} planes in cubic crystals

(h,k,l) not all 
odd or even

(h,k,l) all odd 
or even

fcc

(h+k+l)=odd(h+k+l)=evenbcc

Reflection 
absent

Reflection 
present

Lattice
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Possible peaks for cubic structures

222 lkh
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{100}a

bccfccscFamily of 
planes

dhkl
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Powder diffraction

• Use polycrystalline sample
– All possible planes are at angle Θ to beam
– Only ones satisfying Braggs condition provide diffraction
– Need to change angle Θ to detect all “Bragg peaks”

Record of the diffraction angles for a W (tungsten) sample obtained by the use of a diffractometer with 
Cu radiation
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Experimental details (powder diffraction)

Use polycrystalline sample
• Source

• Collimator (slits)

• Sample holder (need rotation)

• Detector (moves in arc around sample; intensity 
vs 2Θ is recorded)


