Lecture 1

Thermodynamics of Surfaces; Equilibrium Crystal Shape

Course will primarily focus on: atomic structure and electronic properties, chemical composition and adsorption properties of surfaces

But ...

Many important aspects of surface properties can be understood from the point of view of macroscopic thermodynamics

- the surface under equilibrium conditions (e.g., faceting, wetting, island growth)

References:

- 1) Zangwill, Chapter 1
- 2) Somorjai, Chapter 3
- 3) http://venables.asu.edu/grad/lectures.html

Lecture 1

1.1 Surface Thermodynamic Functions

<u>Thermodynamics (Gibbs)</u>: In equilibrium, a one-component system is characterized completely by the internal energy, *U*

$$U = U(S, V, N)$$

$$dU = \frac{\partial U}{\partial S}\Big|_{V,N} dS + \frac{\partial U}{\partial V}\Big|_{S,N} dV + \frac{\partial U}{\partial N}\Big|_{V,S} dN$$

$$dU = TdS - PdV + \mu dN$$
(1.1)

Two types of parameters:

- Extensive parameters

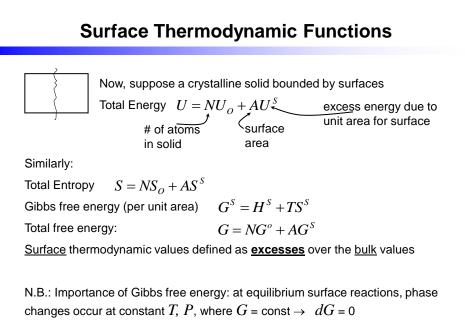
U, *V*, *S*, *N*, *A* (can be summed to give entire system value)

- Intensive parameters

T, *P*, μ_i (thermodynamic driving parameters that <u>do not add</u>)

Lecture 1

1



Lecture 1

3

4

1.2 Surface Tension and Surface Energy

In 3D system to create a volume: $\delta W = P \, dV$ Similarly, to create a surface: $\delta W^S_{T,P} = \gamma \, dA$ Υ is 2D analog of pressure: surface tension e.g., for 2D liquid film, infinite work done to create additional surface area dA: Units of Υ : eV/surface atom erg/cm^2 Joules/m² dynes/cm Newtons /m Note: work of crystal cleavage proportional to $\gamma \, dA$

Lecture 1

1.3 Thermodynamics of Surfaces

$$dU = \frac{\partial U}{\partial S}\Big|_{V,N,A} dS + \frac{\partial U}{\partial V}\Big|_{S,N,A} dV + \frac{\partial U}{\partial N}\Big|_{S,V,A} dN + A\sum_{i,j} \frac{\partial U}{\partial V}\Big|_{S,V,N} d\varepsilon_{i,j} =$$

$$= TdS - PdV + \mu dN + A\sum_{i,j} \sigma_{i,j} d\varepsilon_{i,j} \quad (1.2) \quad \sigma_{i,j} \text{ and } \varepsilon_{i,j} \text{-surf. stress and strain tensors}$$

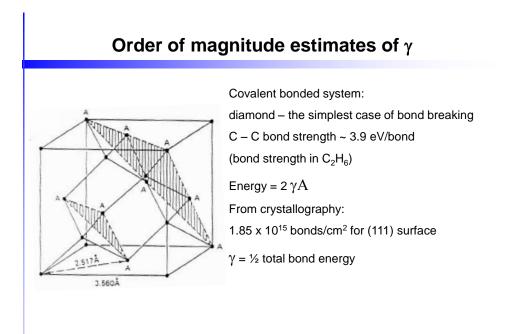
$$\gamma \text{ is independent of small strains only for liquids}$$
More generally we must consider the expression (cf. Zangwill, p.11):

$$\int \frac{1}{\sqrt{1-\gamma}} \sigma_{ij} = \gamma \delta_{ij} + \frac{d\gamma}{d\varepsilon_{ij}}\Big|_{T}$$
For liquid or solid under small strain: $\sigma = \gamma$
In solids it is convenient to denote γ as γ_{i} , or $\gamma(\vec{n}) = \lim \frac{\Delta W^{S}}{\Delta A} (\Delta A \to 0)$
Note: $\gamma = G^{S}$ specific free surface energy" of one component system

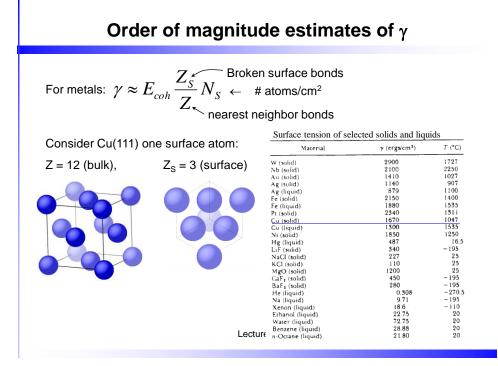
$$\frac{\gamma \text{ is always positive!}}{|\sigma t|^{2}}$$

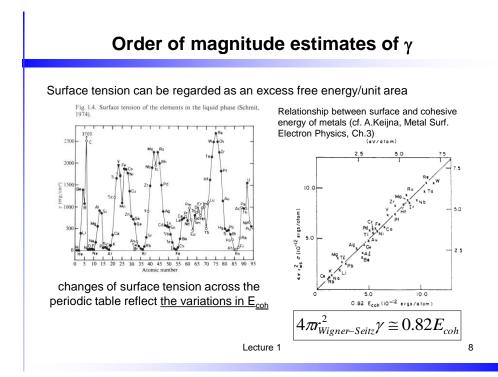
Lecture 1

5

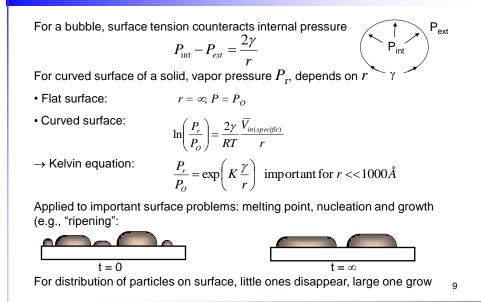


Lecture 1

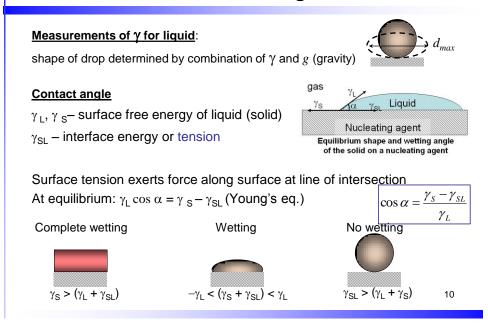


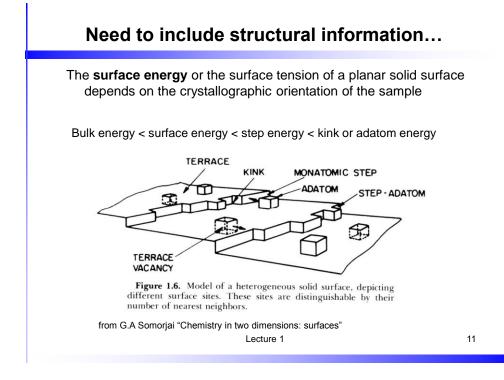


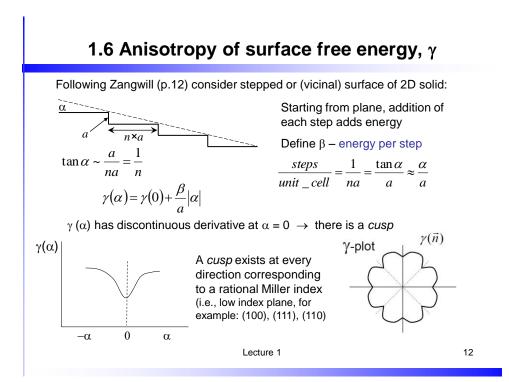
1.4 Curves Surfaces

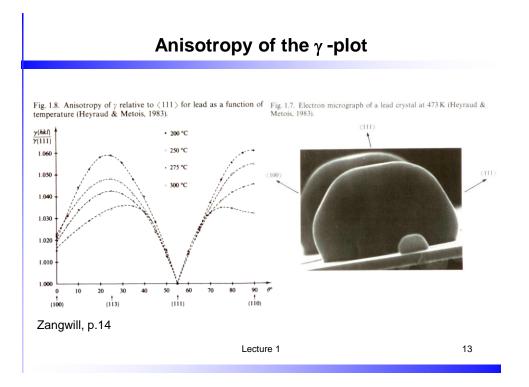


1.5 Contact Angle

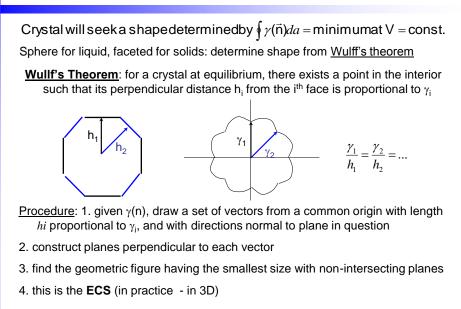








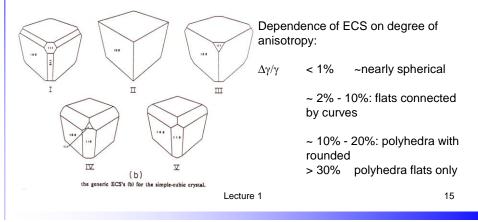
1.7 Equilibrium Crystal Shape (ECS)

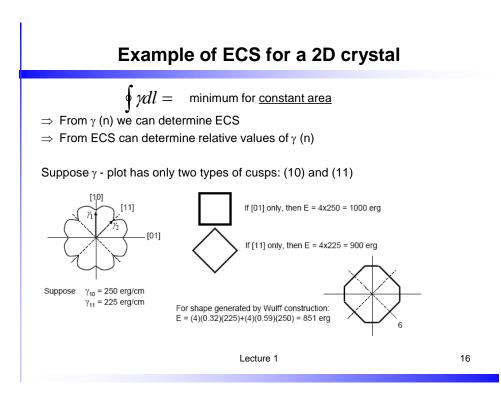


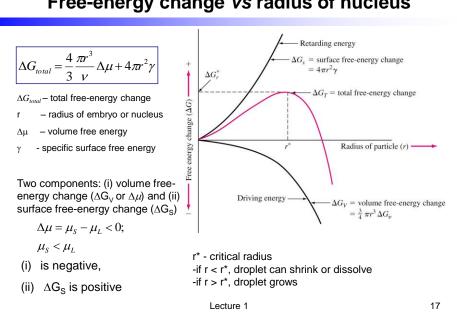
Equilibrium Crystal Shape (ECS)

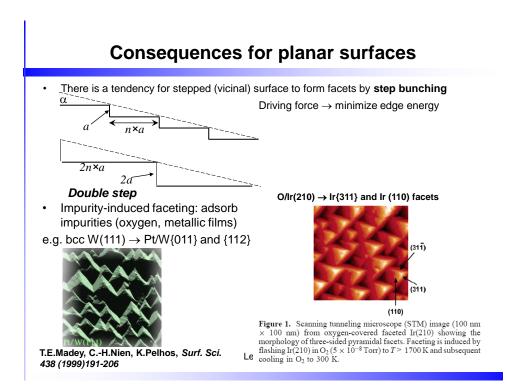
• In equilibrium, shape of a given amount of crystal minimizes the total surface energy

- For Liquids: spherical shape
- · For Solids: Equilibrium Crystal Shape (ECS) has facets

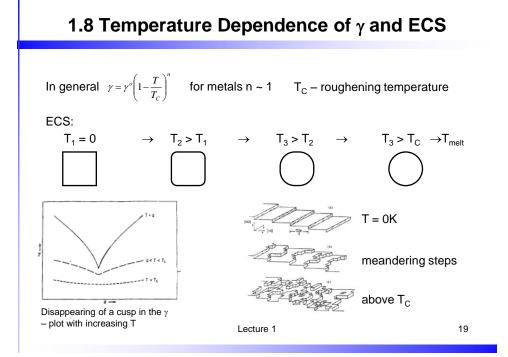




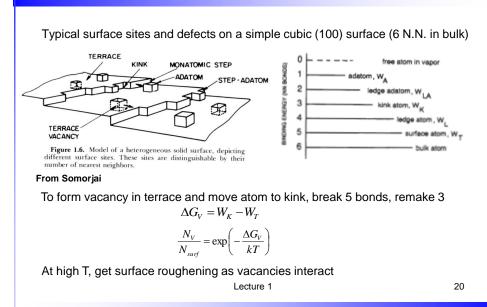


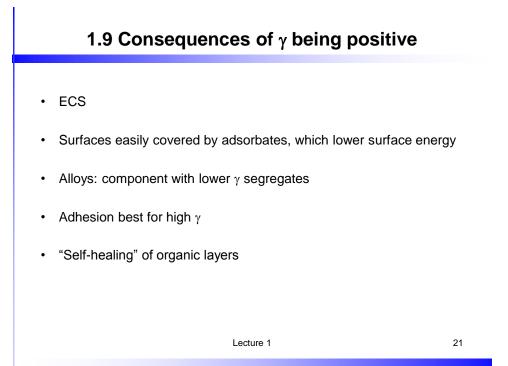


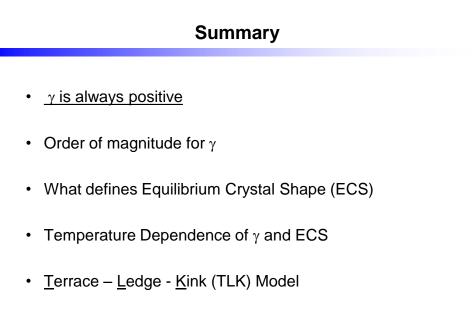
Free-energy change vs radius of nucleus



<u>T</u>errace – <u>L</u>edge - <u>K</u>ink (TLK) Model also <u>S</u>olid <u>o</u>n <u>S</u>olid (SOS) Model







Lecture 1