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Lecture 1 1 

Lecture 1 

Thermodynamics of Surfaces; 

Equilibrium Crystal Shape 

References: 

1) Zangwill, Chapter 1 

2) Somorjai, Chapter 3 

3) http://venables.asu.edu/grad/lectures.html 

Course will primarily focus on: atomic structure and electronic properties, 

chemical composition and adsorption properties of surfaces 

But … 

Many important aspects of surface properties can be understood from the point 

of view of macroscopic thermodynamics 

- the surface under equilibrium conditions (e.g., faceting, wetting, island growth) 
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1.1 Surface Thermodynamic Functions 

Thermodynamics (Gibbs): In equilibrium, a one-component system is 

characterized completely by the internal energy, U 
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Two types of parameters: 

- Extensive parameters  

U, V, S, N, A   (can be summed to give entire system value) 

 

- Intensive parameters 

T, P, i   (thermodynamic driving parameters that do not add) 
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Surface Thermodynamic Functions 

Now, suppose a crystalline solid bounded by surfaces 

Total Energy 
S

O AUNUU 

# of atoms 

in solid 

surface 

area 

excess energy due to 

unit area for surface 

Similarly: 

Total Entropy 

Gibbs free energy (per unit area) 

Total free energy:  

S
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Surface thermodynamic values defined as excesses over the bulk values 

 

N.B.: Importance of Gibbs free energy: at equilibrium surface reactions, phase 

changes occur at constant T, P, where G = const    dG = 0 
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1.2 Surface Tension and Surface Energy 

In 3D system to create a volume:  W = P dV 

Similarly, to create a surface:   WS
T,P =  dA 

    is 2D analog of pressure: surface tension 

 

e.g., for 2D liquid film, infinite work done to create additional surface area dA: 

 

Units of  : 

eV/surface atom 

erg/cm2  Joules/m2       W =F dx= ldx 

dynes/cm Newtons /m 

 

 

Note: work of crystal cleavage proportional to γ dA 
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1.3 Thermodynamics of Surfaces 

 is independent of small strains only for liquids 

More generally we must consider the expression (cf. Zangwill, p.11): 

 

 

 

For liquid or solid under small strain: s =  

In solids it is convenient to denote  as i, or 

Note:  = GS
 specific free surface energy” of one component system 

 is always positive!  
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Order of magnitude estimates of  

Covalent bonded system:  

diamond – the simplest case of bond breaking 

C – C bond strength ~ 3.9 eV/bond 

(bond strength in C2H6) 

Energy = 2 A 

From crystallography: 

1.85 x 1015 bonds/cm2 for (111) surface 

 = ½ total bond energy 
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Order of magnitude estimates of  

For metals:  
S

S
coh N

Z

Z
E

Broken surface bonds 

    # atoms/cm2 

nearest neighbor bonds 

Consider Cu(111) one surface atom: 

Z = 12 (bulk),              ZS = 3 (surface) 

Surface tension of selected solids and liquids  
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Order of magnitude estimates of  

Surface tension can be regarded as an excess free energy/unit area 

changes of surface tension across the 

periodic table reflect the variations in Ecoh 

Relationship between surface and cohesive 

energy of metals (cf. A.Keijna, Metal Surf. 

Electron Physics, Ch.3) 

cohSeitzWigner Er 82.04 2  
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1.4 Curves Surfaces 

For a bubble, surface tension counteracts internal pressure 
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Pext 
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For curved surface of a solid, vapor pressure Pr, depends on r 

• Flat surface:  r = , P = PO 

• Curved surface:  

 

 Kelvin equation:  

 

Applied to important surface problems: melting point, nucleation and growth 

(e.g., “ripening”: 
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For distribution of particles on surface, little ones disappear, large one grow 
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1.5 Contact Angle 

Measurements of  for liquid:  

shape of drop determined by combination of  and g (gravity) 

 

Contact angle 

 L,  S– surface free energy of liquid (solid) 

SL – interface energy or tension 

 

Surface tension exerts force along surface at line of intersection 

At equilibrium: L cos a =  S – SL (Young’s eq.) 

 

 

dmax 

L < (S + SL) < L 

L

SLS




a


cos

S > (L + SL)  

Complete wetting Wetting No wetting 

SL > (L + S)  
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Need to include structural information… 

The surface energy or the surface tension of a planar solid surface 

depends on the crystallographic orientation of the sample 

from G.A Somorjai “Chemistry in two dimensions: surfaces” 

Bulk energy < surface energy < step energy < kink or adatom energy 
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1.6 Anisotropy of surface free energy,  

Following Zangwill (p.12) consider stepped or (vicinal) surface of 2D solid: 

Starting from plane, addition of 

each step adds energy 

Define b – energy per step 

a 

a n×a 

nna

a 1
~tan a

aanacellunit

steps aa


tan1

_

    a
b

a
a

 0

 (a) has discontinuous derivative at a = 0    there is a cusp 

A cusp exists at every 

direction corresponding 

to a rational Miller index 
(i.e., low index plane, for 

example: (100), (111), (110) 

(a) 

a           0           a 
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Anisotropy of the  -plot 

Zangwill, p.14 
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Wullf’s Theorem: for a crystal at equilibrium, there exists a point in the interior 

such that its perpendicular distance hi from the ith face is proportional to i 

h1 
h2 ...

2

2

1

1 
hh


1 

2 

Procedure: 1. given (n), draw a set of vectors from a common origin with length 

hi proportional to i, and with directions normal to plane in question 

2. construct planes perpendicular to each vector 

3. find the geometric figure having the smallest size with non-intersecting planes 

4. this is the ECS (in practice  - in 3D) 

1.7 Equilibrium Crystal Shape (ECS) 

Sphere for liquid, faceted for solids: determine shape from Wulff’s theorem 

  

const. Vat minimum)n(by  determined shape a seek  willCrystal  da






8 

Lecture 1 15 

Equilibrium Crystal Shape (ECS) 

• In equilibrium, shape of a given amount of crystal minimizes the total surface 

energy 

• For Liquids: spherical shape 

• For Solids: Equilibrium Crystal Shape (ECS) has facets 

Dependence of ECS on degree of 

anisotropy: 

 

∆/  < 1% ~nearly spherical 

 

 ~ 2% - 10%: flats connected 

 by curves 

 

 ~ 10% - 20%: polyhedra with 

 rounded 

 > 30% polyhedra flats only 
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Example of ECS for a 2D crystal 

 From  (n) we can determine ECS 

 From ECS can determine relative values of  (n) 

 

Suppose  - plot has only two types of cusps: (10) and (11) 

 dl minimum for constant area 
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Free-energy change vs radius of nucleus  




 2
3

4
3

4
r

r
Gtotal 

Gtotal – total free-energy change 

r        – radius of embryo or nucleus 

     – volume free energy 

      - specific surface free energy 

 

Two components: (i) volume free-

energy change (GV or ) and (ii) 

surface free-energy change (GS) 

LS

LS







 ;0

(i) is negative,  

(ii)  GS is positive 

r* - critical radius 

-if r < r*, droplet can shrink or dissolve 

-if r > r*, droplet grows 
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Consequences for planar surfaces 

• There is a tendency for stepped (vicinal) surface to form facets by step bunching 
a 

a n×a 

2a 
2n×a 

Double step 

Driving force  minimize edge energy 

• Impurity-induced faceting: adsorb 

impurities (oxygen, metallic films) 

e.g. bcc W(111)  Pt/W{011} and {112}   

T.E.Madey, C.-H.Nien, K.Pelhos, Surf. Sci. 

438 (1999)191-206  

O/Ir(210)  Ir{311} and Ir (110) facets 
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1.8 Temperature Dependence of  and ECS 

In general  for metals n ~ 1 

 

ECS: 

 T1 = 0      T2 > T1          T3 > T2   T3 > TC  Tmelt 

n

C

o

T

T










 1

Disappearing of a cusp in the  

– plot with increasing T 

TC – roughening temperature 

T = 0K 

meandering steps 

above TC 
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Terrace – Ledge - Kink (TLK) Model 

also Solid on Solid (SOS) Model 

Typical surface sites and defects on a simple cubic (100) surface (6 N.N. in bulk) 

From Somorjai 

To form vacancy in terrace and move atom to kink, break 5 bonds, remake 3 

TKV WWG 








 


kT

G

N

N V

surf

V exp

At high T, get surface roughening as vacancies interact 
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1.9 Consequences of  being positive 

• ECS 

 

• Surfaces easily covered by adsorbates, which lower surface energy 

 

• Alloys: component with lower  segregates 

 

• Adhesion best for high  

 

• “Self-healing” of organic layers 
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Summary 

•   is always positive 

 

• Order of magnitude for  

 

• What defines Equilibrium Crystal Shape (ECS) 

 

• Temperature Dependence of  and ECS 

 

• Terrace – Ledge - Kink (TLK) Model 


