Lecture 1
I

Thermodynamics of Surfaces;
Equilibrium Crystal Shape

Course will primarily focus on: atomic structure and electronic properties,
chemical composition and adsorption properties of surfaces

But ...

Many important aspects of surface properties can be understood from the point
of view of macroscopic thermodynamics

- the surface under equilibrium conditions (e.g., faceting, wetting, island growth)

References:

1) Zangwill, Chapter 1

2) Somorjai, Chapter 3

3) http://venables.asu.edu/grad/lectures.html
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1.1 Surface Thermodynamic Functions
I

Thermodynamics (Gibbs): In equilibrium, a one-component system is
characterized completely by the internal energy, U

U=U(SV,N)
du=Y s+ M gvi Y gy
oS |, n oV sy ON|, s

dU =TdS —PdV + wdN (1.1)
Two types of parameters:
- Extensive parameters
U VSN, A (can be summed to give entire system value)
- Intensive parameters
T, Py (thermodynamic driving parameters that do not add)
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Surface Thermodynamic Functions
[

Now, suppose a crystalline solid bounded by surfaces

Total Energy U = NU, + AUwS'\_ws energy due to
] unit area for surface
# of atoms surface
in solid area

Similarly:
Total Entropy S = NS, + ASS
Gibbs free energy (per unitarea) G°> =H?® +TS®

Total free energy: G =NG° + AGS
Surface thermodynamic values defined as excesses over the bulk values

N.B.: Importance of Gibbs free energy: at equilibrium surface reactions, phase
changes occur at constant T, P, where G = const > dG =0
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1.2 Surface Tension and Surface Energy
[

In 3D system to create a volume: W = P dV
Similarly, to create a surface: oW 5 = ydA

Yis 2D analog of pressure: surface tension

e.g., for 2D liquid film, infinite work done to create additional surface area dA:

Units of ¥:

eV/surface atom —

erglcm? Joules/m? oW =F dx=yldx
dynes/cm Newtons /m

Note: work of crystal cleavage proportional to Y dA
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1.3 Thermodynamics of Surfaces

U o ou v
du =—|V,N,Ad5 +W|S,N,Adv +m|s,v,AdN + A;W‘vav“‘dgivi B

0S
=TdS —PdV + xdN + AZaiyjdgi’j (1.2) g and g;-surf. stress and
i

straln tensors
vy is independent of small strains only for liquids
More generally we must consider the expression (cf. Zangwill, p.11):
! oy = 15, o d B

For liquid or solid under small strain: G = 7y

In solids it is convenient to denote Y as ¥;, or ¥(1) =

Note: Y = GS specific free surface energy” of one component system

Y is always positive!
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Order of magnitude estimates of y

Covalent bonded system:

diamond — the simplest case of bond breaking

/“‘Hr |
ﬂ;[]m]n% /I C — C bond strength ~ 3.9 eV/bond
k i |

(bond strength in C,Hg)

Energy = 2 YA
From crystallography:

1.85 x 10 bonds/cm? for (111) surface

Y = ¥ total bond energy
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Order of magnitude estimates of y

7 «~  Broken surface bonds
For metals: y = Ecoh = Ns <« # atoms/cm?

™ nearest neighbor bonds

Surface tension of selected solids and liquids

Consider Cu(111) one surface atom:

Materal ¥ (ergsiem?) T (°C)

= = W (solid) 2800 1727

Z =12 (bulk), Zs = 3 (surface) Nb (solid) 2100 2250
Au (solid) 1410 1027

Ag (solid) 1140 907

Ag (liquid) 879 1100

Fe (solid) 2150 1400

Fe (liquid) 1880 1535

Pt (sohd) 2340 1311

4 Cu (solid) 1670 1047
Cu (liquid) 1300 1535
Ni (solid) 1850 1250

Hg (liquid) 487 16,5
LiF (solid) 340 —195
NaCl (solid) 227 25
KCI (sohd) L0 25

MgO (sohd) 1200 25
CaF; (solid) 450 =195
BaF, (solid) 280 -195
He (liquid) 0.308 ~270.5
Na (liquid) 971 - 195
Xenon (liquid) 18.6 =110
Ethanol (hquid) 22.75 20
Water (liquid) 7275 20
Benzene (liquid) 28.88 20
Lecture -Octane (iquid) 21.80 20

Order of magnitude estimates of y

Surface tension can be regarded as an excess free energy/unit area

Fig. 1.4. Surface tension of the elements in the liquid phase (Schmit,

1974) Relationship between surface and cohesive
energy of metals (cf. A.Keijna, Metal Surf.

Electron Physics, Ch.3)
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1.4 Curves Surfaces

[
For a bubble, surface tension counteracts internal pressure t Pext
27/ ™~ e
Pot =P =— Pint
r
For curved surface of a solid, vapor pressure Pr, dependsonl ~ Y
* Flat surface: r=o,P=Pq
+ Curved surface: P2 \Zn(specmc)
Pb) RT r

— Kelvin equation:
a % = exp(K Zj important for r <<1000A

r
(0]
Applied to important surface problems: melting point, nucleation and growth

(e.g., “ripening”:
t=0 t=o0
For distribution of particles on surface, little ones disappear, large one grow 4
o TTTII———
1.5 Contact Angle
|

Measurements of 'y for liguid:

shape of drop determined by combination of Y and g (gravity)

Contact angle
YL, Y s— Surface free energy of liquid (solid)

. ; AN
YsL — interface energy or tension Equilibrium shape and wetting angle

of the solid on a nucleating agent

Surface tension exerts force along surface at line of intersection

At equilibrium: y, cos o =y g— vg (Young’s eq.) cosq = s " 7st
7L

Complete wetting Wetting No wetting

e ﬁ .
: R S EEEEEE
Ys> (L * Ys) < (s *7vs) <1 YsL> (L +7s) 10




Need to include structural information...
I

The surface energy or the surface tension of a planar solid surface
depends on the crystallographic orientation of the sample

Bulk energy < surface energy < step energy < kink or adatom energy

TERRACE

KINK MONATOMIC STEP

VACANCY

Figure 1.6. Model of a heterogencous solid surface, depicting
different surface sites. These sites are distinguishable by their
number of nearest neighbors.

from G.A Somorjai “Chemistry in two dimensions: surfaces”
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1.6 Anisotropy of surface free energy, y
I

Following Zangwill (p.12) consider stepped or (vicinal) surface of 2D solid:

oo~ Starting from plane, addition of
each step adds energy

Define g — energy per step
steps 1 tana _«
unit _cell na a a

@)=+ L

v (o) has discontinuous derivative at oo = 0 — there is a cusp

(n)
¥(o) | Y-plot 4
, A cusp exists at every
V direction corresponding ;

- 0 o
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to a rational Miller index
(i.e., low index plane, for
example: (100), (111), (110)
12
B ]



Anisotropy of the y -plot

Fig. 1.8. Anisotropy of 7 relative to (111 for lead as a function of Fig 1.7, Electron micrograph of a lead crystal at 473K (Heyraud &
temperature (Heyraud & Metois, 1983). Metois, 1983)
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1.7 Equilibrium Crystal Shape (ECS)

I
Crystalwill seeka shapedeterminedby fy(ﬁ)da =minimumat V = const.
Sphere for liquid, faceted for solids: determine shape from Wulff's theorem

Wullf’s Theorem: for a crystal at equilibrium, there exists a point in the interior
such that its perpendicular distance h; from the it" face is proportional to v,

4

Procedure: 1. given y(n), draw a set of vectors from a common origin with length
hi proportional to vy;, and with directions normal to plane in question

2. construct planes perpendicular to each vector
3. find the geometric figure having the smallest size with non-intersecting planes
4. this is the ECS (in practice - in 3D)



Equilibrium Crystal Shape (ECS)

* In equilibrium, shape of a given amount of crystal minimizes the total surface
energy

* For Liquids: spherical shape

« For Solids: Equilibrium Crystal Shape (ECS) has facets

Dependence of ECS on degree of
| anisotropy:

Ayly <1%  ~nearly spherical

~ 2% - 10%: flats connected
by curves

~ 10% - 20%: polyhedra with
rounded
(b) >30% polyhedra flats only

the generic ECS's () for the simple-cubic crystal.
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Example of ECS for a 2D crystal

7d| = minimum for constant area

= Fromy (n) we can determine ECS
= From ECS can determine relative values of y (n)

Suppose y - plot has only two types of cusps: (10) and (11)

[10]
[11] If [D1] enly, then E = 4x250 = 1000 erg

w If [11] only, then E = 4x225 = 900 erg

Suppose ¥,y = 250 ergicm

11 = 225 ergicm . P
For shape generated by Wulff construction: & ™

E = (4){0.32)(225)+(4)(0.59)(250) = 851 erg

@
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AG

total —

3

S Au+an’y

Two components: (i) volume free-
energy change (AG, or Ag) and (ii)
surface free-energy change (AGg)

Ap = pg
Hs <l

AG,,, — total free-energy change
r — radius of embryo or nucleus
Ap - volume free energy

y - specific surface free energy

—uy <0;

(i) is negative,

(i) AGg is positive

2nxa

2a
Double step

L

Free-energy change vs radius of nucleus

«~— Retarding energy

~—— AG, = surface free-energy change
AG; A,

AGy = total free-energy change

Free energy change (AG)

r Radius of particle (r) ——

Driving energy ——\ . "
© &y AGy = volume free-energy change

3 -
= 7 AG,

r* - critical radius
-if r < r*, droplet can shrink or dissolve
-if r > r*, droplet grows
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Consequences for planar surfaces

. There is a tendency for stepped (vicinal) surface to form facets by step bunching

Driving force — minimize edge energy

* Impurity-induced faceting: adsorb
impurities (oxygen, metallic films)

e.g. bcc W(111) —» PY/W{011} and {112}
AN=S S ARA

/- V'd
TE. Madey| C.-H.Nien, K.Pelhos, Surf. Sci.

438 (1999)191-206

O/Ir(210) - Ir{311} and Ir (110) facets

(110)

Figure 1. Scanning tunneling microscope (STM) image (100 nm

» 100 nm) from oxygen-covered faceted Ir(210) showing the

morphology of three- -sided pyramidal facets. Faceting is induced by

flashing Ir(210) in O» (5 x 107 Torr) to T'> 1700 K and subsequent
Le mohlw m O, to 300 K.



1.8 Temperature Dependence of y and ECS
|

In general y=y°[1—TLJ formetalsn~1 T, —roughening temperature
9

- T;>T, - T3>Te >Ther

_//’9 p==-
—

T .
%55@ meandering steps

TEELE %~ aboveT¢

Disappearing of a cusp in the y

— plot with increasing T Lecture 1 19

Terrace — Ledge - Kink (TLK) Model

also Solid on Solid (SOS) Model
S

Typical surface sites and defects on a simple cubic (100) surface (6 N.N. in bulk)

TERRACE O === fres aam In vapar
KI MONATOMIC STEP i P
1
adatom, W,
P 2 incige acwlem, W
=
g 3 kirk wioen, W,
H
= 4 IIII!Q!:IIWTLWk
VRCANGY ! -] Surtace slom | W -
L]
Figure 1.6. Model of a heterogencous solid surface, depicting 8 S o
different surface sites. These sites are distinguishable by their
number of nearest neighbors.

From Somorjai

To form vacancy in terrace and move atom to kink, break 5 bonds, remake 3

AG, =W, —W,
N _ o[ - 2G
Nsurf - Xp( KT )

At high T, get surface roughening as vacancies interact
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1.9 Consequences of y being positive

ECS

Surfaces easily covered by adsorbates, which lower surface energy
Alloys: component with lower y segregates

Adhesion best for high y

“Self-healing” of organic layers
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Summary

v is always positive

Order of magnitude for y
What defines Equilibrium Crystal Shape (ECS)
Temperature Dependence of y and ECS

Terrace — Ledge - Kink (TLK) Model
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