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Mean Free Path / A

Lecture 3

Surface Structure, continued:
Low Energy Electron Diffraction and Microscopy
How to determine surface structure:

- Theoretical background

- Low Energy Electron Diffraction (LEED)

.
Si{111){7x7) 37eV

- Reflection High-Energy Electron Diffraction (RHEED)
- Low Energy Electron Microscopy (LEEM)
Additional: Scanning Electron Microscopy

References:

1) Zangwill, Chapter 3

2) Woodruff & Delchar, Chapter 2 and pp. 449-460
3) Attard and Barnes, pp,25-28, 47-62

4) Kolasinski, pp.84-91

5) LEEM: http://www.research.ibm.com/leem/#item2

Electron Backscattering: concepts of diffraction

o 4\\\ fgm 20000 Electron diffraction and microscopy:
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Elastic backscattered e, ~ few % at 100eV
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Fig.V.2. Qualitative large-scale overview of the energy distribution of electrons emit-
ted from a surface which is irradiated by an electron beam of primary energy E,.

“Universal curve” for electrons

Short inelastic mean free path for

Surface sensitive electrons means that elastic scattering
/~ energy regime of electrons is very surface sensitive
e '\ - =
D) — L Lecture 3 2
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3.1 Real Space and Reciprocal Space Lattices

- Given a unit cell with basis vectors (&,, d,)

- There is a complementary reciprocal lattice (8,*,8,*)
§-d*=5, (i,j=12)=>a*La and &*L§

Rectangular Lattice

- Area of unit cell A ° ° ° ° °
A x| - — .
Za &’ g« A=E &, |sina R R . o

3, g,* A*=|4*| a,*|sina*
1 [ ] [ ] [} [}
Ax=— |
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~3% * ° e o o
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A/(/o\remprocal space e o o o o
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[¢] [ ] [ ] [ ] [ ] [ ]
o [¢]
® o0° ® recal%pace ® 3

Substrate and Overlayer Structures

Suppose overlayer (or reconstructed surface layer) lattice different from substrate
T,=na, +ma, Z’ )

T, =nb, + mb, ;2 by

Overlayer real space lattice: B _

El>1 =G 8 +Gyp,a, b, =
k;2 =G,,d, +G,,8,

Overlayer reciprocal lattice: )

61*: G, *a,*+G,*a,*

E).2*: G,,*a,*+G,,*a,*

where G*=G ! (inverse transposed matrix),| ©©9°°,
Gy~ Gy '

" dEt G * Gij T dEt G * Lecture 3
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3.2 Reciprocal Lattice and Diffraction

[
2z
k

Recall the de Broglie relation: 4 =%

Incident electrQn @
plane wave P
.ﬂn : ° ° °

Periodic array
with direction [h k]

Constructive interference when path length difference = n A
d. (sing—sing,)=nA, n=integer

Second-orger
Furst-oeder Giffcockon

Forelectrons: A(A)= ﬂ, ~1-2A ditlrachion 201

E(eV) 10}
For Heatom: A(A)= 0.02

E(eV) l:g’e:l
For normal incidence :d,, sing=n 12.2

ST JE@eV)

¢, =0,0p=90°,n=1: E=@

hk 2erg-order
dilfraction

- as E T, beam moves towards normal 00) 5
- solution for a direction, not intensity

3.3 LEED Instrumentation

LEED patterns for O /Cu(001):

Ultranigh vacuum chamber

(a) clean Cu(001); (b) p(2 x 1) O; (c) c(2 x 3)O /Cu(001)
- : “ =

() (b) (©)

Geometrical Theory of Diffraction:

Figure 2.12  Schematic drawing of a LEED chamber.

Screen-type apparatus; also measure
beam widths and intensity with Faraday cup < Analysis of LEED beam direction (position of
spots) to give symmetry and geometry of unit cell

« Strong interaction between low energy electrons
and matter = dynamic theory for intensities

« Simplification: elastic interactions as scattering of
waves at a 2D lattice

S Lecture 3 6
from www.omicron.de
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Interference Conditions

In 1D case, interference condition is: a;(Singp—sing,) =n4

K o ¢ k' ai[%[(sin p—sin qau)}:Z;zn (for 1D case)
ciwo ‘ e o o 27 |-
Periodic array with == ‘k‘
direction [1 0]

a-k=a 27”sin 0, 4 -k'=a Zjﬁsin(p
In2D case: &,(k'—k) =27h; h,kare integers
a, (k'—K) = 27k

What does this have to do with the reciprocal lattice?
The equations are satisfied if: ‘ Ak, = (K'=K), = Zﬂ(hél*+k§2*)‘

Prove by substitution: &, (K'—k), = &,(27h)a, *+4,(27k)a,* = 27h
Direction of interference maxima determined by vectors of reciprocal lattice:

G = 272(hd, *+ka,*) :fa *

Energy and momentum conservation

Recall: energy is conserved in an elastic collision: kn

h2k2 —
E= k
2m K,

k?=k? or ki+k*>=k"%+k"

Parallel momentum is conserved in diffraction:
Iz|‘| = IZ" + Gk
where @, =27(ha, *+kd,*) <« substrate

Gn = 277(hb, *+kb,*) < overlayer

= the LEED pattern is an image of the surface reciprocal net

Aside: Ewald sphere — a graphical solution to interference eq.

Lecture 3
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3.4 Analysis of a simple diffraction pattern
[

Sketch of diffraction pattern (reciprocal lattice):

01
o X
Overlayer
peaks ~— 27
o x
Real space structure:
X Ox0>0 O OxO0
Substrate
(o} X (e]
peaks -7 = = (o] o] o o o o}
bl
* Relations between overlayer and substrate o s
. . } ]
reciprocal lattices : i
o | o o ,o0
\ |
» Construct real-space substrate lattice LO--%-Q__(HL o
O x O (e} o

* Next: construct overlayer lattice based on i
knowledge of a, and a, c(4 x 2)

3.5 Applications and Complications of LEED

Applications of LEED:

1. Surface order and cleanliness — most common

2. Surface atomic structure — need theory

3. Step density — get step height/density from angular beam profile (SPALLED)
4

. Phase transition in overlayers - structure may undergo transition with
change in coverage or T

5. Dynamics of ordering, disordering, growth, phase transitions - time evolution

Complications and other aspects of LEED:

1. Electron beam damage — sensitive molecular adsorbates

2. Domain structure

— if two domains with different structure coexist = easy to distinguish

— sometimes difficulties exist (e.g., 3 domains of p(2x1) on fcc(111) = (2x2)
3. Transfer width (for real experimental system A ~0.01, AE~0.5eV)

- the dimensions of ordered regions on the surface are limited to the “transfer
width” (Woodruff, p.36-37)

Lecture 3 10
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3.6 Theory of LEED Intensities

Positions of LEED spots give information only about surface geometry (unit cell)
Need intensity analysis for determining positions of overlayer atoms

Kinetic Theory — “single scattering” theory

Basic assumption: electron undergoes only a single scattering event when
interacting with ion cores

Other assumptions:

Incident wave can be described by plane wave: ¥; =y e

ik-F

i i i © ), R
After scattering, the wave from a single atom is s =| w,— |- f(k,k )-e',(\ VR
R X Phase shift
.. Spherical ~ Atomic caused by path
- wave scattering ~ difference
° ) factor between atom
L For a 2D array: 1 « M and origin

2 2 Interference
I“‘F‘ "Gl/function
ey

S [
£ i(k'-K)-R;
Structure factor: F z f,-e
. j=1
(sum over unit cell)
Lecture 3 11

Results of Kinematic Theory

How does intensity vary?

- need to fulfill “Bragg condition”

- no explicit E dependence, except for atomic scattering factor =slow | as ET
- theory predicts Bragg peak positions, but poorly estimates relative intensity

Example: get interference because of

q I e ® ® ()in-plane (2D) scattering
¢ ® ® (i) between-plane scattering
37.7 ' ._A . A=d(l+cosg)=ni
T
Ni(100)
(00)beam
2

%é/w %24/ Need multiple

scattering approach!!!

0014

(a) (b) (c)

Fig.4.10a-c. Schematic representation of single and multiple scattering processes in
| LEED. (a) single-scattering events at the “lattice planes” cause a regular Bragg reflec-
0 J tion, (b) Double-scattering events with forward- and subsequent back-scattering con-
0100 200 "‘—300 400 500 600 700 tribute to the (00) Bragg spot. (c) Double-scatiering event with back-scattering and
subsequent forward-scattering

relative intensity oo/l (%)

electron kinetic energy (eV)
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Multiple Scattering Theory
[

Highly computational; includes

-ion core scattering

- multiple scattering

- inelastic scattering

- temperature effects

Each atom experiences a flux that includes the incident flux
and contributions from the other atoms

» Direct (transform of diffr. int.) — highly debatable?!

» Assume a trial structure, do multiple scattering calculations,
use R-factor analysis
(or Pendry factor; the smaller the better!!!)

(@).()

(L6
()
o5

Intensity (%)
i

2
&L
)
.\ 2 )

Fig. 226 Schematic plan and sectional view of the structure determi
the Nif100}(y/2 x \/2)R45°-CO surface, e determination for

3.7 Reflection High-Energy Electron Diffraction (RHEED)

Elements of RHEED: high energy electrons (5-50keV); grazing incidence on
crystalline sample; often in Molecular Beam Epitaxy (MBE) setups

Ewald sphere

(a) (b)
Electron =
un g =
= SN /
T Sample i
T10-100 keV
T =

Fig.VIIL4. (a) Schematic of the experimental set-up for RHEED. The inset shows
two different scattering situations on a highly enlarged surface area: surface scattering
on a flat surface (below) and bulk scattering by a three-dimensional crystalline island
on top of the surface (above). (b) The Ewald sphere construction for RHEED. k and
k’ are primary and scattered wavevectors, respectively. The sphere radius k = k' is
much larger than the distance between the reciprocal lattice rods (hk). For more deta-
ils, see Sect.4.2 and Figs.4.2,3

cf. Luth, pp.201-209
RHEED pattern consists of streaks and spots (some controversy about causes of streaks)

- streaking: diffraction from perfect planes, and nearly “flat” Ewalds sphere;

- spots: surface roughness Lecture 3 14
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Important use:

RHEED oscillations for MBE to ®
monitor growth conditions

Range of elements:
Destructive:
Depth probed:

Detection limits:

Resolving power:

Lateral resolution:

Imaging capability:

Main uses:

Cost:

Lecture 3, January 21, 2013

Example RHEED patterns

Fig.VIIL.5a-c. RHEED patterns taken
with a primary energy of E = 15 keV
and a direction of incidence of [112] on
a Si(111) surface: (a) Clean Si(111) fur-
face with a (7x7) superstructure. (b)
After deposition of nominally 1.5 mono-
layers (ML) of Ag streaks due to the Ag
layers are seen on the blurred (7x7)
structure. (¢) After deposition of 3ML
of Ag the texture structure due to the
Ag layers develops in place of the (7x7)

structure [VIIL3) phosphor

screen

electron beam

9
).

/
7 substrate

Substrate after deposilion/subslvate after deposition
full mono-layer

half mono-layer

growth time

U ow
pE

Comparison of Experimental Specs for LEED and RHEED
I

all, but not element specific both
no, except in special cases of electron-beam damage both
4-20A (LEED) 2-100A (RHEED)

0.1ML; atomic positions to 0.1A both

typically 200A; best systems S5um both

typically 0.1mm; best systems ~10um (LEED)

200pm x 4mm; best systems 0.3nm x 6 nm (RHEED)
no; need special instruments — LEEM

analysis of surface crystallography (LEED)

monitoring surface structure, in-situ growth (RHEED)
<75K (LEED) 50k-200k (RHEED)

Lecture 3 16



Physics 9826b

3.8 Low Energy Electron Microscope (LEEM)

LEEM history

* 1962 Invention by Ernst Bauer

» 1985 Operational LEEM instrument (Telieps and Bauer)
* 1991 IBM LEEM-I (Tromp and Reuter)

* 1998 IBM LEEM-II

» 2006 SPECS FE-LEEM P90

Phase contrast

Si(111) CaF.
Surface

Si(111) CaF. 747
Interface

Lecture 3, January 21, 2013
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IBM LEEM II

= After diffraction, electrons are
accelerated from ~ 1 eV to ~
10,000 eV

objective
lens

sample

projector
lenses

screen E—=

Lecture 3 19

Surf. Reviews and Lett. 5 (1998) 1189

LEEM operating parameters
I

+ 0-100 eV electron energy

+ field of view 1 - 100 um

* 5 nm resolution in plane

+ vertical resolution: atomic steps, 0.1 nm
* in situ growth, etching

*+ RT-1200°C

= extremely useful tool to study crystal growth in situ

*
From R.M Tromp Lecture 3 http//www.research.ibm.com/leem/

Lecture 3, January 21, 2013
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[
Scanning electron microsco SEM

- topology, morphology, chemical
information (BSE and EDX)

+ 0.5-1000keV electron energy

+ field of view 0.1 - 100 pm

* 5nm resolution in plane

+ Magnification 10x — 300,000x

» Typical operating pressure <latms

* Non-destructive nature: though
sometimes electron beam irradiation
can cause sample damage

3.9 Scanning Electron Microscopy (SEM)

-~ 2 -

by Eric Barbagiovanni

» Advantages: surface, common technique
- Disadvantages: vacuum compatibility; coating non-conductive specimens,

typical cost: US$50,000 to 300,000

Secondary electrons (SEs): are
produced by the interactions between
energetic e’s and weakly bonded
valence e’s of the sample

Backscattered electrons (BSESs): are
primary e’s leaving the specimen after a
few large angle elastic scattering events

Electron beam-solid interactions

Auger electron: incident e kicks out an inner
shell e-, a vacant e- state is formed; this
inner shell vacant state is then filled by
another e from a higher shell, and
simultaneously the energy is transferred to
another e that leaves the sample

Characteristic X-rays: emitted when a hole is
created in the inner shell of an atom in the
specimen due to inelastic e- scattering, as it
can recombine with an outer shell e- (EDX)

Cathodoluminescene (CL): light emission
arising from the recombination of e-h pairs
induced by excitation of e’s in the valence
band during inelastic scattering in a
semiconducting sample

Lecture 7 22
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a LEO 1530 field emission scanning

(middle right).

beam lithography and liftoff (below).

The e-beam lithography system (right) is

electron microscope (FE-SEM) fitted with
a laser interferometer controlled stage

The micrograph (bottom right) shows a square array of
300nm holes on 700nm pitch written in PMMA on Si.
Also shown is an array of Cr dots on Si patterned by e-

SEM/e-beam lithography in the Nanofab

http://www.uwo.ca/fab/ 23

Schematic diagram of SEM

Cathode Cathode ray tube
(CRT)

Wehnelt

Anode

Magnetic lens

(Condenser) Imag

Electron beam
of CRT

Filament (cathode): free e’s by
thermionic emission of W, LaBg

Wehnelt Cylinder: focuses the e-
beam and stabilizes beam current

Anode Plate: maintains the HV
difference between the anode and the
cathode, and accelerates the free
electrons down the column

X- y scanning
coils

Magnetic lens
(Objective)

Electron beam

Samp

Lecture 3, January 21, 2013

Magnification
Generator

Scanning
Generator

CRT Wehnelt

“~—CRT cathode

Condenser Lens: reduces the
diameter of the electron beam to
produce a smaller spot size

Scan Coils: electromagnetically raster
the e-beam on the surface

Final Objective Lens: focuses the e-
beam on the surface; the smallest spot
is about 5 nm (~ 1nm with a FI source)

Detectors: within the scope chamber,
but not part of the column are the
detectors 24

12
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/ / >
/ / /

SEM Detectors

Fleetron bean Collector Se /Iha-l ghtpipe  Photockeetron Preamplifice
mulinh /

i
|
|

7 /

/
PR EN %V
[

Amplifier

~

=

L d

Everhart-Thornley (E-T) detector

Secondary
electron emission
at A is smaller
than that at B

Incident electron beam

Lecture 7

Secondary

at C is highest

. >-<
¢ electron emission 03F

EDS Detector

ackscatter
Detector
0.1 pm nsensitive n-conductmg gold
silicon layer silicon
X-ray

EDX spectrometer

25

Contrast of secondary electron micrograph

Contributions from (a) sample topography and (b) compositional contrast

T T T T T 1 T T
0.5 |- Backseattered electron yiel

fc(M-

g
3 02F

Sceondary cleetren yicld

1 1 1 1 1 1 1 1
0 20 40 60 80
Atomic Number

Q: Why do the backscattered electron micrographs, rather than secondary
electron micrographs reveal the compositional contrast?

Lecture 3, January 21, 2013

13



