Lecture 4

Ultrahigh Vacuum Science and Technology

Why do we need UHV?

1 Atmosphere = 760 torr; 1 torr = 133 Pa; N ~ 2.5 \times 10¹⁹molecules/cm³ Hertz-Knudsen equation

 $Z_W = \frac{p}{(2\pi m k_B T)^{1/2}}$

At $p = 10^{-6}$ Torr it takes ~ 1 s to one molecule thick layer (1 ML) So, for reasonable measurement times: at $p = 10^{-10}$ Torr it takes ~ 10^{4} s = 2.75 hrs for 1 ML

Poforoncos:

- 1) Leybold Product and Vacuum Technology Reference Book
- 2) Woodruff & Delchar, pp. 4 11
- 3) Luth, pp.6-17
- 4) Kolasinski, Chapter 2, pp. 57 -61,
- 5) Yates, Chapter 1

Lecture 4

1

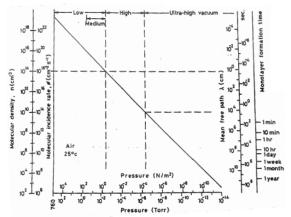
Outline

P, V, N
area
to
pump

- 1. Basic Principles of UHV
- 2. How to attain UHV?
- 3. Pumping through conducting elements
- 4. UHV Setups
- 5. Pumps
- 6. Material Considerations

Lecture 4

Universal density scale


Universal density scale	g/cm ³
Big Bang	∞
Black hole	10^{27}
Neutron Star	10^{14}
White Dwarf	10^{6}
Solar Center	158
Sun (average density)	1.4
Water on Earth	1
Air	10^{-3}
Vacuum in Laboratory	10-18
Interstellar Space	10^{-24}
Universe	10-30
Empty Regions in Space	10^{-33}

3

4.1 Basic Principles of UHV

Use 3 interrelated concepts to define vacuum (all related to pressure)

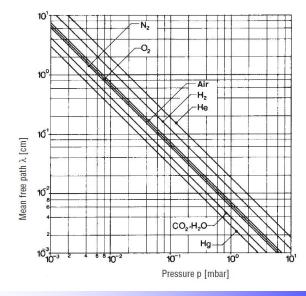
- Molecular Density (average number of molecules/unit volume)
- Mean Free Path (average distance between molecular collisions)
- Time to monolayer formation, τ_{ML}

4

Mean Free Path

- Mean free path (average distance traveled between collisions)
 - depends on the size of the molecule and molecular density (pressure)

$$\lambda = \frac{1}{\sqrt{2}\pi d^2 n}$$


where d is the molecular diameter, in cm, and n is the number of molecules per cm^3 .

• For air at room temperature, the mean free path (in cm) can be found from

$$\lambda = \frac{0.005}{p_{Torr}}$$

Lecture 4

Mean Free Path correction for different gasses

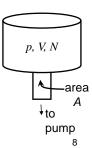
6

Typical contaminants are different...

Component	Atmo	sphere	Ultra-high vacuum			
	Percent by volume	Partial pressure, Torr	Partial pressure, Torr	Partial pressure, Torr		
N_2	78.1	5.9×10 ²	2×10 ⁻¹¹	-		
O_2	20.9	1.6×10 ²	-	3×10 ⁻¹³		
H ₂ O	1.57	1.2×10 ¹	1.3×10 ⁻¹⁰	9×10 ⁻¹³		
Ar	0.93	7.05	6×10 ⁻¹³	-		
CO ₂	0.033	2.5×10 ⁻¹	6.5×10 ⁻¹¹	6×10 ⁻¹²		
Ne	1.8×10 ⁻³	1.4×10 ⁻²	5.2×10 ⁻¹¹	-		
CH ₄	2.0×10 ⁻⁴	1.5×10 ⁻³	7.1×10 ⁻¹¹	3×10 ⁻¹³		
H_2	5.0×10 ⁻⁵	3.8×10 ⁻⁴	1.8×10 ⁻⁹	2×10 ⁻¹¹		
CO	-	-	1.4×10 ⁻¹⁰	9×10 ⁻¹²		

Leybold Product and Vacuum Technology Reference Book

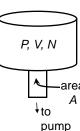
Lecture 4


4.2 What determines vacuum system performance?

Vacuum system performance is determined by:

- System design (volume, conductance, surface, materials)
- Gas load, Q
 - Surface condition (outgassing and contaminations)
 - System materials (diffusion and permeation)
 - Leaks (external and internal leaks)
- Pumping speed, S

 $p \propto \frac{Q}{S}$


<u>Function of a pump:</u> molecules strike or pass through an orifice of area A and enter the pump, which attempts to keep them from returning to the volume V.

Lecture 4

How to attain UHV?

For an ideal gas, using kinetic theory of ideal gases, one can calculate the rate of pumping, S, and p_{eq} : (see Appendix A-II for details)

From Eq.8 of A-II, for an ideal system (no leaks or outgassing):

$$\frac{dp}{dt} = -\frac{S}{V}p; \quad S - \text{pumping speed (1/s)}; \ p = p_i \exp\left[-\frac{S}{V}t\right] \ p = 0 \text{ at } t = \infty;$$

$$S = \frac{v_a AK}{4} = \frac{\sqrt{\frac{8}{\pi} \frac{kT}{m}}}{4} AK; K - \text{statistical capture coeff.} (0 \le K \le 1)$$

Max pumping speed for 1 cm² orifice:
$$S(1cm^2) = \frac{4.64 \times 10^4 \times 1cm^2 \times 1}{4} = 11.5l/s$$

Note: in real system, pressure is limited by leaks, outgassing, etc., limiting the ultimate base pressure. For constant leak L ($Torr \ U/s$), we have eq. 12:

$$\frac{dp}{dt} = -\frac{S}{V}(p - p_{eq}), \text{ where } p_{eq} = \frac{L}{S}$$

9

Gas flow at low pressures

Flow Conditions:

Viscous: (may be turbulent or laminar) $\lambda \ll D$ (typical diameter of vessel)

Transition: $\lambda \sim D$

Molecular Flow (HV, p<10⁻³ Torr): $\lambda >> D$ (limit discussion to this case)

D: diameter of the pipe

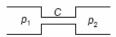
Gas flow at low pressures: throughput

Throughput, Q:

Pumping gas from volume, two main assumptions:

- 1) Ideal gas law: pV = N k T
- 2) Continuity equation: $n_1A_1v_1 = n_2A_2v_2$, where Av=S, so $n_1S_1 = n_2S_2$ (# molecules/s crossing cross section is constant)

Important quantity is throughput, Q, which is proportional to the mass flow rate:


$$Q = p \frac{dV}{dt} = pAv$$

!!! Don't confuse throughput and pumping speed:

- Q depends on p while S does not.
- *S* is defined as the volume of gas/unit time which the pump removes from the system with pressure *p* at the inlet of the pump.

4.3 Pumping through conducting elements

In real cases, we don't pump though ideal orifices: consider throughput through any conducting element (tube, elbow, etc.)

Define **conductance** as: $Q = C(p_1 - p_2)$

The conductance is determined by the geometry of the element, and is approximated by:

 $C \sim D^3/L$ – for long tube,

 $C \sim D^2$ (for orifice)

See Appendix III for more details

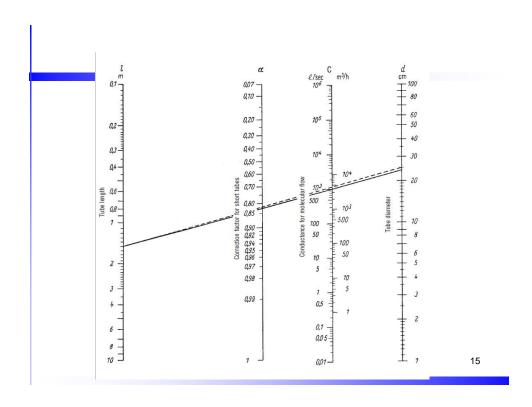
Pumping through conducting elements

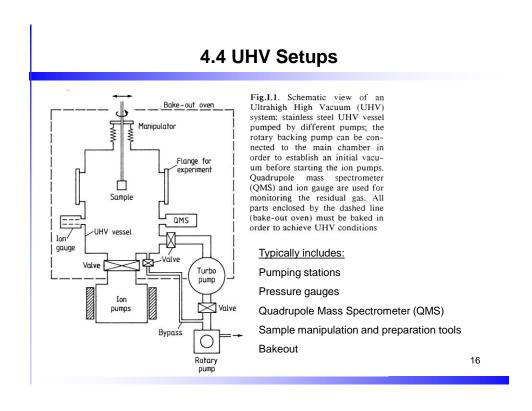
At UHV conductance is constant

Ohm's law analog: Q ~ current, Δp ~ voltage; C ~ conductivity

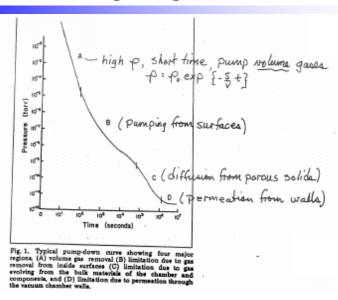
Relation of Pumping Speed and Conductance

Effective pumping speed S in a chamber connected by conductance C to a pump having speed $S_{\scriptscriptstyle D}$ is given by:


$$\frac{1}{S} = \frac{1}{S_p} + \frac{1}{C} \Rightarrow S = C \left[\frac{1}{1 + \frac{C}{S_p}} \right]$$


Effectively conductance is reducing pumping speed

Lecture 4 13


Example: Suppose a 60 l/s turbo pump is connected to a chamber via a straight pipe 3 cm in diameter and 30 cm long. What is S?

Chamber
$$C_{pipe}$$
 pump

Outgassing: bakeout

4.5 Pumps

760 Torr – 10⁻³ Torr:

rotary, dry, sorption, membrane

HV: $10^{-2} - 10^{-6}$ Torr:

turbomolecular, diffusion, cryo

UHV: $10^{-6} - 10^{-12}$ Torr:

ion, turbomolecular, diffusion, cryo_

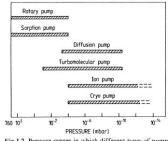


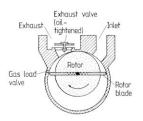
Fig.I.2. Pressure ranges in which different types of pumps can be employed

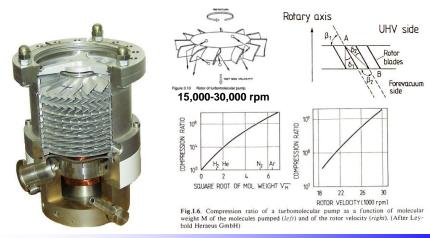
17

- **Positive displacement** pumps: expansion of a cavity, allow gases to flow in from the chamber, seal off the cavity, and exhaust it to the atmosphere
- Momentum transfer pumps: high speed jets of dense fluid or high speed rotating blades to knock gaseous molecules out of the chamber
- Entrapment pumps capture gases in a solid or absorbed state (cryo, getter, ion pumps)

Roughing pumps

- · Rotary vane (a.k.a. mechanical, roughing) positive displacement
- Sorption (e.g., contains zeolite cooled with LN₂₎
- Diaphragm dry and membrane pumps zero oil contamination
- · Scroll pumps (the highest speed dry pump)




Fig.1.4. Schematic cross section through a rotary roughing pump. During the gas inlet phase the inlet volume expands. Further rotation of the eccentric rotor causes compression of this volume until the outlet phase is reached

Lecture 4 19

Turbomolecular Pumps

Gas molecules are accelerated from the vacuum side to the exhaust side Depends on impact processes between the pumped molecules: molecular mass of the gas and rotor velocity (not as good for He and $\rm H_2$)

Getter UHV pumps

- •_Ti sublimation getter pump
- · Ion getter pump
- Cryo pump (need regeneration)
- + Effective for H2, H2O and CO
- need HV to start

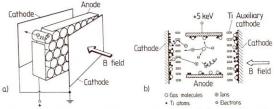
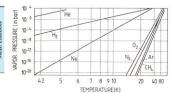



Fig.1.7a,b. Schematic view of an ion-getter pump: (a) The basic multicell arrangement. Each cell consists essentially of a tube-like anode. The cells are sandwiched between two common cathode plates of Ti, possibly together with auxiliary cathodes of Ti, (b) Detailed representation of the processes occurring within a single cell. Residual gas molecules are hit by electrons spiralling around the magnetic field B and are ionized. The ions are accelerated to the cathode and/or auxiliary cathode; they are trapped on the active cathode surface or they sputter Ti atoms from the auxiliary cathode, which in turn help to trap further residual gas ions

4.6 Material Considerations:

- Vapor pressure function of temperature (watch for alloys containing materials with high vapor pressure at working temperature)
- Mechanical strength shape, temperature
- Electrical properties insulators, non magnetic
- · Optical properties
- · Gas solubility, permeability
- Cost
- Fabrication capability

Metals:

Stainless Steels – 304, etc; general steels

Ni, Cu, Al – problem of bonding (Al); strength (Cu) OFHC copper

Rare metals - Zr, Ti

Refractory metals - W, Mo, Ta, Nb, Re

Precious metals - gold, Pt, AG

Soft metals - In, Ga

Materials

Glasses

Quartz (>96% SiO2): permeation primarily He through open structure Good electrical properties; optical – different for different glasses

Borosilicate - mostly silica + alumina

Other window material:

Sapphire, LiF, CaF₂, mica (not easy to machine)

Ceramics

Many different types – most preferred for UHV high purity alumina **Macor –** machinable ceramics

Elastomers and Plastomers:

HV: rubber, tygon,

UHV: nylon, teflon, silver epoxy neoprene, viton

Lecture 4

23

Appendix I

1 ↓ = →	mbar	Pa (N/m³)	dyn · cm ⁻² (μbar)	atm (phys.)	Torr (mm Hg)	inch Hg	Micron (μ)	cm H ₂ O	kp · cm ⁻² (at tech.)	lb · in ⁻² (psi)	lb ⋅ ft ⁻²
mbar	1	10 ²	10 ³	9.87 · 10 ⁻⁴	0.75	2.953 · 10-2	7.5 · 10 ²	1.02	1.02 · 10-3	1.45 - 10-2	2.089
Pa	10-2	1	10	9.87 · 10 ⁻⁶	7.5 - 10-3	2.953 · 10 ⁻⁴	7.5	1.02 · 10-2	1.02 · 10-5	1.45 - 10-4	2.089 · 10-2
μbar	10-3	0.1	1	9.87 · 10 ⁻⁷	7.5 - 10-4	2.953 · 10 ⁻⁵	7.5 · 10 ⁻¹	1.02 · 10-3	1.02 · 10 ⁻⁶	1.45 - 10-5	2.089 - 10-3
atm	1013	1.01 · 10 ⁵	1.01 · 10 ⁶	1	760	29.92	7.6 · 10 ⁵	1.03 · 10 ³	1.033	14.697	2116.4
Torr	1.33	1.33 · 10 ²	1.33 · 10 ³	1.316 · 10 ⁻³	1	3.937 · 10-2	10 ³	1.3595	1.36 · 10 ⁻³	1.934 - 10-2	2.7847
in Hg	33.86	33.9 · 10 ²	33.9 · 10 ³	3.342 · 10-2	25.4	1	2.54 · 10 ⁴	34.53	3.453 · 10-2	0.48115	70.731
μ	1.33 · 10 ⁻³	1.33 · 10 ⁻¹	1.333	1.316 · 10 ⁻⁶	10-3	3.937 · 10 ⁻⁵	1	1.36 · 10-3	1.36 · 10 ⁻⁶	1.934 · 10-5	2.785 · 10-3
cm H ₂ 0	0.9807	98.07	980.7	9.678 - 10-4	0.7356	2.896 · 10-2	7.36 · 10 ²	1	10-3	1.422 - 10-2	2.0483
at	9.81 · 10 ²	9.81 · 10 ⁴	9.81 · 10 ⁵	0.968	$7.36 \cdot 10^{2}$	28.96	7.36 · 10 ⁵	10 ³	1	14.22	2048.3
psi	68.95	68.95 · 10 ²	68.95 · 10 ³	6.804 · 10 ⁻²	51.71	2.036	51.71 · 10 ³	70.31	7.03 · 10-2	1	1.44 · 10 ²
lb ⋅ ft ⁻²	0.4788	47.88	478.8	4.725 · 10 ⁻⁴	0. 3591	1.414 · 10-2	359.1	0.488	4.88 - 10-4	6.94 - 10-3	1

Normal conditions: 0 °C and sea level, i.e. p = 1013 mbar = 760 mm Hg = 760 torr = 1 atm

in Hg = inches of mercury; 1 mtorr (millitorr) = 10^{-3} torr = 1 μ (micron ... μ m Hg column)

Pounds per square inch = Ib · in-2 = Ib / sqin = psi (psig = psi gauge ... pressure above atmospheric, pressure gauge reading; psia = psi absolute ... absolute pressure)

Pounds per square foot = lb / sqft = lb / ft²; kgf/sqcm² = kg force per square cm = kp / cm² = at; analogously also: lbf / squin = psi 1 dyn · cm² (cgs) = 1 µbar (microbar) = 1 barye; 1 bar = 0.1 Mpa; 1 cm water column (cm water column = g / cm² at 4 °C) = 1 Ger (Geryk)

atm ... physical atmosphere – at ... technical atmosphere; 100 - (x mbar / 10.13) = y % vacuum

Table II: Conversion of pressure units

Appendix II

Pumping of an Ideal Gas

From the kinetic theory of ideal gases,

$$pV = N k T \tag{1}$$

Take the derivative with respect to time, yielding,

$$\frac{dp}{dt} = -\frac{kT}{V} \left(\frac{dN}{dt}\right) \tag{2}$$

assuming T and V constant (usually a good assumption). Now,

$$M = \frac{nv_a A}{4} \tag{3}$$

number of molecules striking surface area A per unit time. Then,

$$\frac{dN}{dt} = K \frac{nv_a AK}{4} \tag{4}$$

number of molecules removed per unit time with K as statistical capture coefficient (0<K<1), and

$$\frac{dp}{dt} = -\frac{kT}{V} \frac{nv_a AK}{4} \tag{5}$$

from (1)

$$n = \frac{N}{V} = \frac{p}{kT} \tag{6}$$

and

$$\frac{dp}{dt} = -\frac{kT}{V} \frac{v_a AK}{4} \frac{p}{kT} = \frac{v_a AK}{4V} p \tag{7}$$

then, let $\frac{v_a AK}{4} \equiv S$, pumping speed with units of volume/time

$$\frac{dp}{dt} = -\frac{S}{V}p\tag{8}$$

Now, for gas leakage alone:

$$\frac{dp}{dt} = \frac{L}{V} \tag{9}$$

where L is leakage rate into the system and for both leakage and pumping,

$$\frac{dp}{dt} = -\frac{S}{V}p + \frac{L}{V} \tag{10}$$

At equilibrium $\frac{dp}{dt} = 0$

$$\frac{s}{v}p_{eq} = \frac{L}{v} \text{ and } p_{eq} = \frac{L}{s}$$
 (11)

Eq. (10) can be written as:

$$\frac{dp}{dt} = -\frac{S}{V}(p - p_{eq}) \tag{12}$$

Finally, integrating (12) leads to

$$p = p_{eq} + (p_i - p_{eq})exp\left(-\frac{S}{V}t\right)$$
(13)

For $p_i >> p_{eq}$

$$p = p_i \exp\left(-\frac{S}{V}t\right) \tag{14}$$

CONDUCTANCE

Define the conductance "C" of a piece of vacuum hardware as: $C = Q/\Delta P$ gas flow/pressure difference

The units of conductance are therefore 'volume/time', usually given in liters/sec.

For parallel connections
$$C_T = C_1 + C_2 + ...$$

For series connections
$$1/C_T = 1/C_1 + 1/C_2 + ...$$

In the molecular flow region (i.e. where the mean free path is greater than the dimensions of the system)

1. Conductance of an orifice

$$C = 3.64(T/M)^{1/2}$$
 liters/sec/cm² × A (cm²)

T is temperature in degrees K; M is molecular number of the molecule.

2. Conductance of a pipe

$$C = 3.8(T/M)^{1/2}(D^3/L)$$
 liters/sec

D and L are in centimeters

for comparison, in the viscous flow region(for nitrogen):

 $C \sim 188 (D^4/L) p_{av}$ liters/sec where D & L are in centimeters and p(average) is in torr