Lecture 7

X-ray Photoelectron Spectroscopy (XPS)

- 7. Photoemission Spectroscopy (XPS)
 - 7.1 Principles
 - 7.2 Interpretation
 - 7.2.1 Notations

7.6 Quantitative Analysis

- 7.2.2 Electron workfunction
- 7.2.3 Chemical shifts
- 7.3 Instrumentation
- 7.4 XPS vs UV photoelectron spectroscopy (UPS)
- 7.5 Auger Electron Spectroscopy (AES)
- Appendix I: Workfunction

Electron Emission

References

- 1) Vickerman, Chapter 2 and 3
- 2) Zangwill; Chapter 2, pp. 20-24 and 4
- 3) Kolasinski, Chapter 2.6
- 4) Woodruff, and Delchar, Chapter 3
- 5) Briggs, Seah, Practical Surface Analysis. 1991; Vol. 1.
- 6) Luth, Chapter 6

Useful web-sites:

- 1) http://www.phy.cuhk.edu.hk/course/surfacesci/index2.html
- 2) http://www.chem.gmul.ac.uk/surfaces/scc/
- 3) http://www.cem.msu.edu/~cem924sg/

Electron Spectroscopy for Chemical Analysis

Spectroscopy	Particles involved	Incident Energy	What you learn
XPS	X-ray in e out	1-4 keV	Chemical state, composition
X-ray Photoelectron UPS	UV photon	5-500 eV	Valence band
UV Photoelectron	e out		
AES Auger Electron	e in, e out; radiationless process, filling of core hole	1-5 keV	Composition, depth profiling
IPS Inverse Photoelectron	e in photon out	8-20eV	Unoccupied states
EELS Electron Energy Loss	e in e out	1-5 eV	Vibrations

3

7.1 Photoemission Spectroscopy: Principles

Electrons absorb X-ray photon and are ejected from atom Energy balance:

Photon energy - Kinetic Energy = Binding Energy hv - KE = BE

- Spectrum Kinetic energy distribution of photoemitted e's
- Different orbitals give different peaks in spectrum
- Peak intensities depend on photoionization cross section (largest for C 1s)
- Extra peak: Auger emission

Photoelectron Spectroscopy: Basics

$$I(d) = K \int_0^d \exp\left(\frac{-x}{\lambda \cos \theta}\right) dx$$

Fraction of signal from various depth in term of λ

Depth	Equation	Fraction of signal (θ = 0)
λ	$\frac{I(\lambda)}{I(\infty)} = \int_{0}^{\lambda} \exp\left(\frac{-x}{\lambda \cos \theta}\right) dx$ $\int_{0}^{\infty} \exp\left(\frac{-x}{\lambda \cos \theta}\right) dx$	0.63
2λ	$\frac{I(2\lambda)}{I(\infty)} = \int_{0}^{\lambda} \exp\left(\frac{-x}{\lambda\cos\theta}\right) dx$ $\int_{0}^{\infty} \exp\left(\frac{-x}{\lambda\cos\theta}\right) dx$	0.86
3λ	$\frac{I(3\lambda)}{I(\infty)} = \int_{0}^{\lambda} \exp\left(\frac{-x}{\lambda\cos\theta}\right) dx$ $\int_{0}^{\infty} \exp\left(\frac{-x}{\lambda\cos\theta}\right) dx$	0.95

1. C. J. Powell, A. Jablonski, S. Tanuma, et al. *J. Electron Spectrosc. Relat. Phenom*, 68, P. 605 (1994). 2 D. F. Mitchell, K. B. Clark, W. N. Lennard, et al., *Surf. Interface Anal.* 21, P. 44 (1994).

7.2 Typical XPS (ESCA) spectrum

7.2.1 X-ray and spectroscopic notations

	Quantum numbers			X-ray	X-ray	Spectroscopic
Principle quantum number:	n	l	j	suffix	level	Level
n = 1, 2, 3,	1	0	1/2	1	К	1s _{1/2}
, , ,	2	0	1/2	1	L ₁	2s _{1/2}
Orbital quantum number:	2	1	1/2	2	L ₂	2p _{1/2}
<i>l</i> =0, 1, 2,, (n-1)	2	1	3/2	3	L ₃	2p _{3/2}
Spin quantum number:	3	0	1/2	1	M ₁	3s _{1/2}
$s = \pm \frac{1}{2}$	3	1	1/2	2	M ₂	3p _{1/2}
Total angular momentum:	3	1	3/2	3	M ₃	3p _{3/2}
$j = l + s = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$	3	2	3/2	4	M_4	3d _{3/2}
	3	2	5/2	5	M ₅	3d _{5/2}
Spin-orbit split doublets		Etc.		Etc.	Etc.	Etc.

Sub-shell	<i>j</i> values	Area ratio
S	1/2	-
p	1/2; 3/2	1: 2
d	3/2; 5/2	2: 3
f	5/2; 7/2	3: 4

7

• Determine all of the X-ray levels that all possible for *n*=3 shell?

Binding energy reference in XPS

Energy level diagram for an electrically conductive sample grounded to the spectrometer

- common to calibrate the spectrometer by the photoelectron peaks of Au 4f _{7/2}, Ag 3d_{5/2} or Cu 2p_{3/2}
- the Fermi levels of the sample and the spectrometer are aligned;
- KE of the photoelectrons is measured from the E_F of the spectrometer.

9

7.2.2 Work Function: Uniform Surfaces

- The "true work function" $e\phi$ of a uniform surface of an electronic conductor is defined as the difference between the electrochemical potential $\overline{\mu}$ of the electrons just inside the conductor, and the electrostatic potential energy $\left(-e\Phi_{a}\right)$ of an electron in the vacuum just outside
- $\overline{\mu}$ is work required to bring an electron isothermally from infinity to solid

- Note: $\overline{\mu}$ is function of internal AND surface/external (e.g., shifting charges, dipoles) conditions;
- We can define quantity μ which is function of internal state of the solid Chemical potential of electrons: $\mu = \overline{\mu} + e\Phi_I$ Average electrostatic potential inside

Work Function

- The Fermi energy [E_F], the highest filled orbital in a conductor at T=0K, is measured with respect to $(-e\Phi_I)$ and is equivalent to μ .
- · We can write:

$$e\phi = -e\Phi_o + e\Phi_I - \mu \quad (5.4)$$

$$\phi = \Delta \Phi - \frac{\mu}{e} \tag{5.5}$$

- $\Delta\Phi$ depends on surface structure and adsorbed layers. The variation in ϕ for a solid is contained in $\Delta\Phi$.
- What do we mean by potential just outside the surface???

11

Potential just outside the surface

The potential experienced by an electron just outside a conductor is:

For a uniform surface this corresponds to Φ_o in (5.1):

In many applications, an accelerating field, F, is applied:

Selected Values of Electron Workfunctions*

Element	φ (eV)	Element	φ (eV)	Element	φ (eV)
Ag	4.26	Cu	4.65	Si	4.85
Ag (100)	4.64	Cu(100)	4.59	Ru	4.71
Ag (110)	4.52	Cu(110)	4.48	Та	4.25
Ag (111)	4.74	Cu(111)	4.98	Ta (100)	4.15
Ва	2.52	Ir (110)	5.42	Ta (110)	4.80
С	5.0	Ir(111)	5.76	Ta (111)	4.00
Се	2.9	К	2.30	Ti	4.53
Cr	4.5	LaB ₆	2.66	W	4.55
Cs	2.14	Мо	4.60	Zr	4.05

Units: eV electron Volts;

*Reference: CRC handbook on Chemistry and Physics version 2008, p. 12-114.

7.2.3 Interpretation: Typical spectral features

Binding energies = Orbital energies, BUT ... USE CAUTION!

Energy conservation: $E_i(N) + h v = E_f(N-1) + KE$

 \Rightarrow $h v - KE = E_f(N-1, k) - E_i(N) = E_B$

Binding energy is more properly associated with ionization energy.

In HF approach, Koopmans' Theorem: $E_B = -E_k$ (orbital energy of k^{th} level) Formally correct within HF. Wrong when "relaxation" effects are included.

ALSO: Photoexcitation is rapid event

 \Rightarrow sudden approximation

Gives rise to chemical shifts and plasmon peaks

Qualitative results

A: Identify element

B: Chemical shifts of core levels:

Consider core levels of the same element in different chemical states:

$$\Delta E_B = E_B(2) - E_B(1) = E_K(2) - E_K(1)$$

Often correct to associate $\Delta E_{\rm B}$ with change in local electrostatic potential due to change in electron density associated with chemical bonding ("initial state effects").

15

Chemical Shifts

Core binding energies are determined by: electrostatic interaction between it and the nucleus, and reduced by

• ...

• ..

Chemical Shifts: Oxide Compared to Metal

17

Chemical Shifts

- · Carbon 1s chemical shifts in ethyl trifluoroacetate
- The four carbon lines correspond to the four atoms within the molecule

How to measure peak intensities?

- Accuracy better than 15%
- Use of standards measured on same instrument or full expression above accuracy better than 5%
- In both cases, reproducibility (precision) better than 2%

Must include or correct for (i) x-ray satellites (ii) chemically shifted species (iii) shake-up peaks (iv) plasmon or other losse:

21

Quantification of XPS

Primary assumption for quantitative analysis: ionization probability (photoemission cross section) of a core level is nearly independent of valence state for a given element

 \Rightarrow intensity ∞ number of atoms in detection volume

$$I_{A} = \sigma_{A}(\hbar\omega)D(E_{A})\int_{\gamma=0}^{\pi}\int_{\varphi=0}^{2\pi}L_{A}(\gamma)\int_{x,y}J_{0}(x,y)T(x,y,\gamma,\varphi,E_{A})\int_{x}N_{A}(x,y,z)\exp\left(\frac{-z}{\lambda\cos\theta}\right)dxdydzd\gamma d\theta$$

where:

 σ_{A} = photoionization cross section

 $D(E_A)$ = detection efficiency of spectrometer at E_A

 $L_{\text{A}}(\gamma)$ = angular asymmetry of photoemission intensity

 γ = angle between incident X-rays and detector

 $J_0(x,y)$ = flux of primary photons into surface at point (x,y)

T = analyzer transmission

 ϕ = azimuthal angle

 $N_A(x,y,z)$ = density of A atoms at (x,y,z)

 λ_{M} = electron attenuation length of e's with energy E_{A} in matrix M

 θ = detection angle (between sample normal and spectrometer)

Quantitative analysis

For small entrance aperture (fixed ϕ , γ) and uniform illuminated sample:

$$I_{A} = \sigma_{A}(\hbar\omega)D(E_{A})L_{A}(\gamma_{i})J_{0}N_{A}\lambda_{M}(E_{A})\cos\theta_{i}G(E_{A})$$

Angles γ_i and θ_i are fixed by the sample geometry and $G(E_A) = \iint T(x, y, E_A) dx dy$

 $G(E_A)$ =product of area analyzed and analyzer transmission function

D(E_A)=const for spectrometers Operating at fixed pass energy

 σ_A : well described by Scofield Calculation of cross-section

14 Calculated values of the cross-section σ_A(hu) for Al Ku radiation in terms of the C Is cross-section. (After Scofield²⁶)

7.3 Photoemission Spectroscopy: Instrumentation

X-ray lines			
Line Energy, eV Width, eV			
Ti L _α	395.3	3.0	
Cu L _α	929.7	3.8	
$Mg\;K_{\scriptscriptstylelpha}$	1253.6	0.7	
Al K $_{\alpha}$	1486.6	0.85	
Ti K _α	4510.0	2.0	

How to choose the material for a soft X-ray source:

- 1. the line width must not limit the energy resolution;
- 2. the characteristic X-ray energy must be high enough to eject core electrons for an unambiguous analysis;
- the photoionization cross section of e in different core levels varies with the wavelength of the X-ray, a suitable characteristic X-ray wavelength is crucial to obtain a strong enough photoelectron signal for analysis.

Instrumentation

Electron Energy Analyzers

(a) Concentric Hemispherical Analyzer (CHA) and (b) (Double Pass) Cylindrical Mirror Analyser (CMA)

Surface Science Western- XPS

http://www.uwo.ca/ssw/services/xps.html

http://xpsfitting.blogspot.com/

http://www.casaxps.com/

http://www.lasurface.com/database/elementxps.php

Kratos Axis Ultra (left) Axis Nova (right)

Contact: Mark Biesinger biesingr@uwo.ca

27

7.4 Comparison XPS and UPS

- XPS: photon energy hv=200-4000 eV to probe core-levels (to identify elements and their chemical states).
- UPS: photon energy hv=10-45 eV to probe filled electron states in **valence band** or adsorbed molecules on metal.
- Angle resolved UPS can be used to map band structure (to be discussed later)
- UPS source of irradiation: He discharging lamp (two strong lines at 21.2 eV and 42.4 eV, termed He I and He II) with narrow line width and high flux
- Synchrotron radiation source

continuously variable phootn energy, can be made vaery narrow, very intense, now widely available, require a monochromator

Introduction to Photoemission Spectroscopy in solids, by F. Boscherini http://amscampus.cib.unibo.it/archive/00002071/01/photoemission_spectroscopy.pdf

Studies with UV Photoemission

- The electronic structure of solids -detailed angle resolved studies permit the complete band structure to be mapped out in k-space
- The adsorption of molecules on solids-by comparison of the molecular orbitals of the adsorbed species with those of both the isolated molecule and with calculations.
- The distinction between UPS and XPS is becoming less and less well defined due to the important role now played by synchrotron radiation.

29

7.5 Auger Electron Spectroscopy (AES)

- Steps in Auger deexcitation
- Note: The energy of the Auger electrons do not depend on the energy of the projectile electron in (a)!

Auger spectrum of Cu(001) and CuP

Use dN/dE (derivative mode) \Rightarrow Why?

Sections of Auger electron spectra, showing Cu (M2,3VV) and P (L2,3VV) transitions, for a low temperature PH3 overlayer phase at 140K and (b) for a P c (6×8) structure obtained by annealing the surface of (a) to Tx > 450K. Both spectra have been normalized to give the same Cu (60 eV) feature peak height.

31

 Are Auger peaks recorded at 60eV, 350eV and 1500eV equally surface sensitive?

Applications of AES

- · A means of monitoring surface cleanliness of samples
- High sensitivity (typically ca. 1% monolayer) for all elements except H and He.
- Quantitative compositional analysis of the surface region of specimens, by comparison with standard samples of known composition.
- The basic technique has also been adapted for use in :
 - -Auger Depth Profiling: providing quantitative compositional information as a function of depth below the surface (through sputtering)
 - -Scanning Auger Microscopy (SAM): providing spatially-resolved compositional information on heterogeneous samples (by scanning the electron beam over the sample)

33

7.6 Quantitative analysis

As sample and analyzer are in electrical contact, Fermi levels align.

$$KE_{PE} + e\phi_{analyzer} = hv$$

Depth Profiling

Calibration of depth scale

- Sputtering rate determined from the time required to sputter through a layer of the same material of known thickness.
- After the sputtering analysis, the crater depth is measured using depth profilometer. A constant sputtering rate is assumes.

35

Quantitative Analysis

- Estimate chemical concentration, chemical state, spatial distribution of surface species
- Simplest approximation is that sample is in single phase

RELATION BETWEEN SURFACE STRUCTURE

FIG. 1. Idealized surface structures: (a) plane homogeneous surface; (b) a surface with lateral inhomogeneities consisting of several different surface phases; (c) a surface with depth inhomogeneities (the circles and the crosses represent different types of atoma); (d) a surface phase consisting of a submonolayer of foreign atoms on an otherwise homogeneous surface; and (e) an interface between two homogeneous bulk phases (Ref. 1).

J. Vac. Sci. Technol. A, Vol. 4, No. 3, May/Jun 1986

Appendix I

- · Workfunction of polycrystalline materials
- · Electron emission

References:

- 1) Zangwill, p.57-63
- 2) Woodruff & Delchar, pp. 410-422, 461-484
- 3) Luth, pp.336, 437-443, 464-471
- 4) A. Modinos, "Field, Thermionic and Secondary Electron Spectroscopy", Plenum, NY 1984.

37

Work Function: Polycrystalline Surfaces

Consider polycrystalline surface with "patches" of different workfunction, and different value of surface potential

i,Φ_{oi}	j,	k	1
m	m	0	р

At small distance r_{o} above ith patch electrostatic potential is Φ_{oi}

At distances large w/r/t/ patch dimension:

 $\Phi_o = \sum f_i \Phi_{oi}, f_i = \text{fractional area of } ith \text{ patch}$

So mean work function is given by:

$$e\overline{\phi} = \sum_{i} f_{i} e \phi_{i} \quad (5.10)$$

- at **low** applied field, electron emission controlled by: $e\overline{\phi}$
- at **high** field (applied field >> patch field) electron emission related to individual patches: $e\phi_i$

On real surfaces, patch dimension < 100Å, if $\Delta\phi\sim 2$ eV then patch field $F\sim 2V/(10^{-6}$ cm) ~ 2 x 10^6 Volts/cm. work required to bring an electron from infinity to solid

Workfunction

Factors that influence work function differences on clean surfaces:

- · Adsorbed layers
- Surface dipoles (cf. Zangwill, p 57)
- · Smooth surface: electron density "spillover"

- · Electron density outside rough surface
- · For tungsten

eφ, eV	W plane
5.70	(110)
4.93	(211)
4.39	(111)
4.30	(116)

Fig. 7.2 Charge distribution at a metal surface (schematic): (a) an atomically smooth surface; (b) an atomically stepped surface.

a a

Work function change upon adsorption

Charge transfer at interface: electropositive (K, Na, ...)
 or electronegative (Cl, O, F, ...)

• Model dipole layer as parallel plate capacitor:

$$\Delta\phi = \frac{n\mu}{\varepsilon_o} \quad \mu \text{ - dipole moment [C m]; n - surface charge density [m$^{-2}$]; } \\ \varepsilon_o = 8.85 \times 10^{-12} [C/Vm]$$

Suppose $\Delta \phi$ = 1.5V for 1×10¹⁵/cm² O atoms on W (100). What is μ ? For molecules with a permanent dipole moment:

Electron Sources: Thermionic Emission

Thermionic emission occurs when sufficient heat is supplied to the emitter so that e's can overcome the work function, the energy barrier of the filament, $E_{w'}$ and escape from it

• Richardson's Equation: (derivation – aside) Current density, j: $j = A_o(1-\bar{r})T^2 \exp(-\frac{e\phi}{kT})$

 $r = \text{reflection coefficient}; A_o = \frac{4\pi mek^2}{h^3} = 120.4 \frac{Amp}{cm^2 \text{ deg}^2}$

Richardson plot:

 $ln(j/T^2)$ vs $1/T \Rightarrow$ \Rightarrow straight line

Electron Emission: Thermionic Emission

• Richardson plot:

 $ln(j/T^2)$ vs $1/T \Rightarrow$ \Rightarrow straight line

Schottky Plot

 $e\phi \rightarrow e\Phi_{o} - bF^{1/2}$ (cf. eq.5.9) ln j vs $F^{1/2} \Rightarrow$ straight line

FIGURE 2.3
Schottky plots for four faces of tungsen. C = 8, 9, 7.9, 8.0 for the (100), (111), (116), and (112) planes, respectively. (From Smith, 1954).

Field Electron Emission

- · Electron tunneling through low, thin barrier
 - Field emission, when F>3×10⁷ V/cm ~ 0.3 V/Å
- · General relation for electron emission in high field:

• P is given by WKB approximation

$$P = const \times \exp\left(-\frac{2^{2/3}m^{1/2}}{\hbar} \int_{0}^{t} (V - E_Z)^{1/2} dz\right)$$

 $j = e \int P(E_z, F) v(E_z) dE_z$

• If approximate barrier by triangle: $\int_{-2}^{\infty} \frac{1}{2} \phi^{\nu/2} \frac{\phi}{F} \sim \frac{1}{2} \frac{\phi^{3/2}}{F}$

$$P = const \times \exp\left(-\frac{2^{2/3}m^{1/2}}{\hbar}\frac{\phi^{3/2}}{F}\right)$$

• Fowler - Nordheim eqn, including potential barrier:

$$j = 1.54 \times 10^{-6} \frac{F^2}{\phi} t^2(y) \exp\left\{-6.83 \times 10^7 \frac{\phi^{3/2} f(y)}{F}\right\}; \text{ where } y = \frac{e^{3/2} F^{1/2}}{\phi}$$

43

How do we get high fields: Field Emission Microscope!

Pump

Fig. 6.5 Schematic drawing of one form of the field emission microscope. E., glass envelope; S., phosphorescent screen; B, tin oxide backing; A, anode connector; T, emitter tip.

Get high field by placing sharp tip at center of spherical tube.

Mag: R/r ~ 5cm/ 10^{-5} cm ~ 500,000 F = cV; c ~ 5/r F ~ 5 x 10^7 V/cm For V = 2,500 Volts.

Fig. 6.7 Field emission image from a clean W field emitter showing the symmetry

W single crystal wire as tip.

Typical pattern on phosphor screen

Seondary Electron Emission

Electrons emitted from surfaces after electron bombardment In general complicated phenomenon involving several interrelated processes

Generally classify secondaries into three categories:

- (I) Elastic;
- (II) Inelastic;
- (III) "true" secondaries (KE < 50 eV)

Total coefficient for secondary emission,

$$\sigma = j_2/j_i = r + \eta + \delta$$

$$\sigma, \delta$$
Energy, E_i

For metals, max values: r ~ 0.2 (E $_p$ ~ eV); ~ 0.02 (large E $_p$) η ~ 0.3 to 0.4; δ ~ 0.5 to 1.8 (E $_p$ ~ few hundred eV) For insulators, σ can be MUCH higher (~ 20!!!!)

Secondary Electron Emission

• Establishment of stable potential for insulators and dielectric materials

In practice, steady state potential reached by dielectic is due mainly to incomplete extraction of secondary electrons

For metals and semiconductors: Correlation between δ and density, ρ

